Scientists find promising way to boost body's immune surveillance via p53

September 18, 2013, Agency for Science, Technology and Research (A*STAR), Singapore

Researchers at A*STAR's Singapore Immunology Network (SIgN) have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers. This strategy works by sabotaging the ability of the cancer cells to hide from the immune system. Published in the prestigious Nature Communications journal, this research opens a new avenue to improve targeted cancer therapy by harnessing the body's own immune system to control and eliminate cancer cells.

Also known as the "Guardian of the Genome", p53 fights cancer by causing damaged cells to die or by halting the growth of before they become cancerous and spread to the rest of the body. Ironically, because of its pivotal role in coordinating a range of cancer-fighting mechanisms in the human body, it is also one of the most important cancer-causing genes when mutated. Studies have shown that more than 50% of all human cancers carry defects in the , and almost all other cancers with a normal carry other defects which indirectly impair the cancer-fighting function of p53.

In this study, the SIgN team discovered for the first time that the integrity of p53 affects the production of a special called Major Histocompatibility Complex (MHC) class I. MHC class I molecules on the cancer cell surface serve as targets for the immune system. Therefore, having less MHC I molecules may allow cancer cells to hide better and escape detection by the immune system. 

Using two cancer cell lines differing only in the integrity of p53 gene, the scientists observed that cancer cells with defective p53 had much less MHC class I on the cell surface. Specifically, they discovered that p53 moderates the expression of MHC I by controlling the amount of another protein called ERAP1 in the cells. Interestingly, a number of disease conditions including tumour , multiple sclerosis and autoimmune disease were recently reported to be associated with ERAP1.

The team leader, Associate Professor Ren Ee Chee from SIgN said, "We were surprised to discover that p53 regulates MHC class I production by acting through ERAP1. This may explain how cancer cells escape detection by our body's immune system. More importantly, it opens up exciting avenues of research to explore how restoration of p53 with drugs such as those that target ERAP1 can help to harness the immune system to recognise and destroy cancer cells."

Acting Executive Director of SIgN, Associate Professor Laurent Rénia said, "The team has uncovered a new door to manipulate one of the most studied yet enigmatic cancer-associated genes of our times. I am confident that this work will pave the way for more targeted, efficient and cost-effective treatment for the millions of cancer patients globally."

p53 also plays a role in virus infection by increasing MHC I. This is a microscope image of lung infected with H1N1 influenza virus. Upon H1N1 viral infection, the cells showed an increase in MHC class I (green) and p53 (red) expression. The co-expression of increased MHC class I and p53 is in yellow. This demonstrates that p53àERAP1àMHC I pathway also occurs in viral infection. It may be interesting to explore the role of p53 in viral infection.

Explore further: Research reveals cancer-suppressing protein 'multitasks'

More information: www.nature.com/ncomms/2013/130 … full/ncomms3359.html

Related Stories

Research reveals cancer-suppressing protein 'multitasks'

May 9, 2013
The understanding of how a powerful protein called p53 protects against cancer development has been upended by a discovery by Walter and Eliza Hall Institute researchers.

Scientists detail critical role of gene in many lung cancer cases

August 29, 2013
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown that a well-known cancer-causing gene implicated in a number of malignancies plays a far more critical role in non-small cell lung cancer, ...

Wip1 could be new target for cancer treatment

May 6, 2013
Researchers have uncovered mutations in the phosphatase Wip1 that enable cancer cells to foil the tumor suppressor p53, according to a study in The Journal of Cell Biology. The results could provide a new target for the treatment ...

Deficiency in p53 anti-tumor protein delays DNA repair after radiation

April 23, 2013
Researchers at Moffitt Cancer Center have found that a deficiency in an important anti-tumor protein, p53, can slow or delay DNA repair after radiation treatment. They suggest that this is because p53 regulates the expression ...

MicroRNA molecule found to be a potent tumor-suppressor in lung cancer

September 16, 2013
New research shows that microRNA-486 is a potent tumor-suppressor molecule in lung cancer, and that the it helps regulate the proliferation and migration of lung-cancer cells, and the induction of programmed cell death, or ...

Recommended for you

Improving vaccines for the elderly by blocking inflammation

January 22, 2018
By identifying why skin immunity declines in old age, a UCL-led research team has found that an anti-inflammatory pill could help make vaccines more effective for elderly people.

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.