Deficiency in p53 anti-tumor protein delays DNA repair after radiation

April 23, 2013

Researchers at Moffitt Cancer Center have found that a deficiency in an important anti-tumor protein, p53, can slow or delay DNA repair after radiation treatment. They suggest that this is because p53 regulates the expression of two enzymes (JMJD2b and SUV39H1) that control the folding of DNA.

According to the researchers, p53 is highly inducible by radiation. Activation of p53 stabilizes chromosomes by promoting the repair of heterochromatin DNA, which controls the expression of nearby genes and ensures accurate distribution of chromosomes during cell division.

Their findings, which published online Feb. 4 in Oncogene, are significant because they shed light on the consequence of p53 deficiency that frequently occurs in tumors and further explain the function of p53 in the development of cancer.

Crucial to multicellular organisms, p53 is a that regulates the cell cycle and helps prevent cancer by maintaining genetic stability and inhibiting . But after irradiation, p53 deficiency results in abnormal levels of SUV39H1 and JMJD2b, enzymes that play a vital role in the structure of chromosomes, especially in DNA damage control and repair.

"Different tumor types have variable responses to ionizing radiation," explained study lead author Jiandong Chen, Ph.D., senior member of the and Molecular Medicine Program at Moffitt. "Radiation therapy is more effective if tumors are defective in repairing damaged DNA. The is compromised to different degrees in all tumors, which may explain the fact that radiation often kills more than normal cells."

In this study, the researchers worked with multiple cancer cell lines.

"We found that p53 activates JMJD2b and represses SUV39H1," Chen said. "Depletion of JMJD2b, or sustained expression of SUV39H1, delays the repair of heterochromatin DNA after ," explained Chen. "The function of p53 may be particularly important in higher organisms because of the increased complexity of their genomes."

Although they note that there is no general consensus on the relationship between p53 mutation status and treatment response, in certain narrow settings such as breast cancer, p53 mutation is associated with favorable response to chemotherapy.

"We can conclude that the chromatin modifiers SUV39H1 and JMJD2b are important mediators of p53 function in maintaining the stability of highly repetitive DNA sequences, and developing new drugs that target these enzymes may benefit cancer therapy," the researchers wrote.

Explore further: Researchers and colleagues identify PHF20, a regulator of gene P53

More information: www.nature.com/onc/journal/vao … /full/onc20136a.html

Related Stories

Researchers and colleagues identify PHF20, a regulator of gene P53

August 24, 2012
Researchers at Moffitt Cancer Center and colleagues have identified PHF20, a novel transcriptional factor, and clarified its role in maintaining the stability and transcription of p53, a gene that allows for both normal cell ...

A protein's role in helping cells repair DNA damage

November 1, 2012
(Medical Xpress)—In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.

New drug shrinks cancer in animals, study shows

April 6, 2011
A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.