Novel therapeutic cancer vaccine reaches human clinical trials

September 6, 2013
This disk-shaped, biodegradable sponge contains growth factors and components of each patient's tumors. Researchers at the Wyss Institute and clinicians at Dana-Farber Cancer Institute hope that when it's implanted under the patient's skin, it will spur the immune system to attack and destroy tumors. Credit: Amos Chan

A cross-disciplinary team of scientists, engineers, and clinicians announced today that they have begun a Phase I clinical trial of an implantable vaccine to treat melanoma, the most lethal form of skin cancer.

The effort is the fruit of a new model of translational research being pursued at the Wyss Institute for Biologically Inspired Engineering at Harvard University that integrates the latest with bioinspired technology development. It was led by Wyss Core Faculty member David J. Mooney, Ph.D., who is also the Robert P. Pinkas Family Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences (SEAS), and Wyss Institute Associate Faculty member Glenn Dranoff, M.D., who is co-leader of Dana-Farber Cancer Institute's Cancer Vaccine Center.

Most therapeutic vaccines available today require doctors to first remove the patient's immune cells from the body, then reprogram them and reintroduce them back into the body. The new approach, which was first reported to eliminate tumors in mice in Science Translational Medicine in 2009, the year the Wyss Institute was launched, instead uses a small disk-like sponge about the size of a fingernail that is made from FDA-approved polymers. The sponge is implanted under the skin, and is designed to recruit and reprogram a patient's own "on site," instructing them to travel through the body, home in on , then kill them.

The technology was initially designed to target cancerous melanoma in skin, but might have application to other cancers. In the preclinical study reported in Science Translational Medicine, 50 percent of mice treated with two doses of the vaccine—mice that would have otherwise died from melanoma within about 25 days—showed complete .

"Our vaccine was made possible by combining a wide range of biomedical expertise that thrives in Boston and Cambridge," said Mooney, who specializes in the design of for tissue engineering and drug delivery. "It reflects the bioinspired engineering savvy and technology development focus of engineers and scientists at the Wyss Institute and Harvard SEAS, as well as the immunological and clinical expertise of the researchers and clinicians at Dana-Farber and Harvard Medical School."

"This is expected to be the first of many new innovative therapies made possible by the Wyss Institute's collaborative model of translational research that will enter human clinical trials," said Wyss Founding Director Don Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and a Professor of Bioengineering at Harvard SEAS. "It validates our approach, which strives to move technologies into the clinical space much faster than would be possible in a traditional academic environment. It's enormously gratifying to see one of our first technologies take this giant leap forward."

The Wyss Institute comprises a consortium of researchers, engineers, clinicians, and staff with industrial and business development experience from the Wyss Institute and nine other collaborating institutions in Greater Boston.

"It is rare to get a new technology tested in the laboratory and moved into human so quickly," said Dranoff, who is also a Professor of Medicine at Harvard Medical School, and Leader of the Dana-Farber/Harvard Cancer Center Program in Cancer Immunology. "We're beyond thrilled with the momentum, and excited about its potential."

Recruitment of participants for the clinical trial began recently under the leadership of F. Stephen Hodi, Jr., M.D., Director of Dana-Farber's Melanoma Center and Associate Professor of Medicine at Harvard Medical School. The goal of the Phase I study, which is expected to conclude in 2015, is to assess the safety of the vaccine in humans.

Explore further: Wyss Institute awarded DARPA contract to further advance sepsis therapeutic device

Related Stories

Wyss Institute awarded DARPA contract to further advance sepsis therapeutic device

March 25, 2013
The Wyss Institute for Biologically Inspired Engineering at Harvard University announced today that it was awarded a $9.25 million contract from the Defense Advanced Research Projects Agency (DARPA) to further advance a blood-cleansing ...

Recommended for you

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

How CD44s gives brain cancer a survival advantage

July 19, 2017
Understanding the mechanisms that give cancer cells the ability to survive and grow opens the possibility of developing improved treatments to control or cure the disease. In the case of glioblastoma multiforme, the deadliest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.