Cantilever sensory array: The Rosetta Stone for antibiotic resistance?

October 25, 2013
This is a visualization of cantilever sensory array technology. Bacteria are shown in red and white, and antibiotics are shown in blue. The laser deflection illustrates how cantilever bending is measured. Credit: JoVE

On October 25, JoVE, the Journal of Visualized Experiments will publish a novel technique to confront the problem of antibiotic resistance. According to Dr. Joseph Ndieyira, one of the developers involved in the technique, "The use of this technology will allow scientists to understand how antibiotics work, how bacteria develop resistance, and what molecular mechanisms could be exploited to get around their defense mechanisms."

"We report a novel, nanomechanical approach to investigate the workings of vancomycin ... one of the last powerful used to combat increasingly-resistant infections such as methicillin-resistant Staphylococcus aureus (MRSA)," said Ndieyira.

Using tiny cantilevers (or beams) no wider then a human hair, Ndieyira and his colleagues take advantage of the cellular stress that antibiotics, when effective, impose on a target bacteria's cell wall. Such stress in turn causes the cantilevers to bend. Using lasers, the bending can then be measured—providing tremendous insight into the drug-target interaction.

According to Ndieyira, the technology confronts a growing problem of multidrug-resistant hospital superbugs. It could aid in the drug discovery process by preventing lead-drug candidates from being disregarded due to a lack of equipment with sufficient sensitivity, and its hope is to jumpstart an already stagnated drug-pipeline by providing this sensitivity in an efficient manner—the cantilever method can simultaneously measure and track a variety of drug-bacteria interactions in real time.

The video will load shortly
This is the JoVE video "Nanomechanics of Drug-Target Interactions and Antibacterial Resistance Detection." Credit: JoVE

"The cantilever assays provide a resolution that simply cannot be obtained with conventional methods, such as those using fluorescence," said Ndieyira, "For example, cantilever sensors can resolve forces of ~10 pN, which is sensitive enough to detect the rupturing of individual hydrogen bonds." According to the article, a single hydrogen molecule can be the difference between drug-susceptible and drug-resistant bacteria.

The cantilever technique is currently under review in the science journal Nature for its clinical use in a microchip. "This prototype will provide a platform for more sensitive measurements, enabling results in early detection of infectious diseases, rapid identification of a host of new biomarkers, and for the engineering of portable diagnostic tools," said Ndieyira. He also described the technique as a possible alternative for drug experimentation on animals.

When asked why he and his colleagues decided to publish their technique through video, Ndieyira said, "JoVE is the only journal that provides a unique and powerful opportunity to communicate my latest measurements and procedures visually, thus making it easy and effective for others to replicate the experiment."

Explore further: 'Cycling' antibiotics might help combat resistance, study suggests

Related Stories

3Qs: The effect of antibiotic resistant bacteria

October 2, 2013

Last month, the Centers for Disease Control and Prevention released a report titled Antibiotic resistance threats in the United States, 2013, that served as a first-ever snapshot of the effect antibiotic resistant microbes ...

Recommended for you

Discovery offers new hope to repair spinal cord injuries

April 24, 2017

Scientists at the Gladstone Institutes created a special type of neuron from human stem cells that could potentially repair spinal cord injuries. These cells, called V2a interneurons, transmit signals in the spinal cord to ...

Motion sickness drug worsens motion perception

April 24, 2017

A new study led by Massachusetts Eye and Ear researchers found that oral promethazine, a drug commonly taken to alleviate motion sickness, temporarily worsened vestibular perception thresholds by 31 percent, lowering one's ...

Macrophages shown to be essential to a healthy heart rhythm

April 20, 2017

A Massachusetts General Hospital (MGH)-led research team has identified a surprising new role for macrophages, the white blood cells primarily known for removing pathogens, cellular debris and other unwanted materials. In ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.