Gene linked to deadly runaway fungal infection

October 21, 2013, Rockefeller University
Gene is linked to deadly runaway fungal infection
Ferocious fungus. A skin-biopsy specimen from a patient with deep dermatophytosis shows a fungus (center) invading skin cells.

For most people, a fungal infection like athlete's foot means a simple trip to the drugstore and a reminder to bring shower shoes to the gym. But in very rare cases, fungal infections can spread below the skin's surface and onto the lymph nodes, bones, digestive tract or even the brain. Researchers from The Rockefeller University and Necker Medical School in Paris have now discovered a genetic deficiency that allows the fungus to spread in this way, a condition called deep dermatophytosis. Their work suggests why treatments for fungal infection sometimes fail, and it gives weight to a genetic theory of infectious diseases, which proposes that a single genetic defect can cause an otherwise healthy person to become severely ill from a minor infection—be it viral, bacterial or fungal.

Jean-Laurent Casanova, head of the Laboratory of Human Genetics of Infectious Diseases, and colleagues examined the genomes of 17 people who had deep dermatophytosis but were otherwise healthy—their immune systems were working well and should have been able to fight off . The researchers focused on a particular gene, CARD9, because previous studies of other had found a defect on the gene to be the cause. After sequencing the patients' genomes, CARD9 was indeed found to be deficient in all of them.

"Our research showed that CARD9 deficiency is the genetic cause of deep dermatophytosis," says Anne Puel, senior scientist at the lab's Necker division. "The primary infection was most often in childhood, when the patients showed recurrent skin or scalp ringworm, and nail infections. Due to their and their resulting impaired immune response, the patients could not adequately fight the fungi. So instead of the germs being cleared from the body, they progressively spread until, in adulthood, the infection manifested in other body regions, which proved deadly in some cases."

The research, published this week in the New England Journal of Medicine, is the latest evidence that genetics play an important role in an individual's ability to overcome .

"As we discover more of these single-gene, inborn immune system defects, we can give susceptible individuals with a family history of the disease a chance to prevent it, through molecular diagnosis and genetic counseling, as well as targeted treatments that restore a poor ," says Casanova, who is senior attending physician at the Rockefeller University Hospital.

Casanova and his team say that further research on CARD9 will examine its exact role in human anti-fungal immunity, tracing the signaling pathways in different cell types that give an individual the ability to fight off an infection.

Explore further: The HOIL1 gene: The cause of a new rare disease

More information: Lanternier, F. et al. Deep dermatophytosis and inherited CARD9 deficiency, New England Journal of Medicine, October 16, 2013. www.nejm.org/doi/full/10.1056/NEJMoa1208487

Related Stories

The HOIL1 gene: The cause of a new rare disease

November 1, 2012
The researcher Capucine Picard, working with the team from Inserm unit 980 "Human genetics and infections diseases"/Université Paris Descartes under the leadership of Jean-Laurent Casanova, along with researchers from a ...

Brain displays an intrinsic mechanism for fighting infection

November 19, 2012
(Medical Xpress)—White blood cells have long reigned as the heroes of the immune system. When an infection strikes, the cells, produced in bone marrow, race through the blood to fight off the pathogen. But new research ...

Molecular causes for life-threatening fungal infections in case of sepsis unravelled

July 27, 2012
(Medical Xpress) -- Pathogenic fungi cause infections with a high mortality rate in patients with weakened immune systems. At Karl Kuchler’s CD Laboratory at the MedUni Vienna, the molecular causes of the life-threatening ...

Genetic disease which causes recurrent respiratory infections discovered

October 17, 2013
Cambridge scientists have discovered a rare genetic disease which predisposes patients to severe respiratory infections and lung damage. Because the scientists also identified how the genetic mutation affects the immune system, ...

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.