Gene linked to deadly runaway fungal infection

October 21, 2013
Gene is linked to deadly runaway fungal infection
Ferocious fungus. A skin-biopsy specimen from a patient with deep dermatophytosis shows a fungus (center) invading skin cells.

For most people, a fungal infection like athlete's foot means a simple trip to the drugstore and a reminder to bring shower shoes to the gym. But in very rare cases, fungal infections can spread below the skin's surface and onto the lymph nodes, bones, digestive tract or even the brain. Researchers from The Rockefeller University and Necker Medical School in Paris have now discovered a genetic deficiency that allows the fungus to spread in this way, a condition called deep dermatophytosis. Their work suggests why treatments for fungal infection sometimes fail, and it gives weight to a genetic theory of infectious diseases, which proposes that a single genetic defect can cause an otherwise healthy person to become severely ill from a minor infection—be it viral, bacterial or fungal.

Jean-Laurent Casanova, head of the Laboratory of Human Genetics of Infectious Diseases, and colleagues examined the genomes of 17 people who had deep dermatophytosis but were otherwise healthy—their immune systems were working well and should have been able to fight off . The researchers focused on a particular gene, CARD9, because previous studies of other had found a defect on the gene to be the cause. After sequencing the patients' genomes, CARD9 was indeed found to be deficient in all of them.

"Our research showed that CARD9 deficiency is the genetic cause of deep dermatophytosis," says Anne Puel, senior scientist at the lab's Necker division. "The primary infection was most often in childhood, when the patients showed recurrent skin or scalp ringworm, and nail infections. Due to their and their resulting impaired immune response, the patients could not adequately fight the fungi. So instead of the germs being cleared from the body, they progressively spread until, in adulthood, the infection manifested in other body regions, which proved deadly in some cases."

The research, published this week in the New England Journal of Medicine, is the latest evidence that genetics play an important role in an individual's ability to overcome .

"As we discover more of these single-gene, inborn immune system defects, we can give susceptible individuals with a family history of the disease a chance to prevent it, through molecular diagnosis and genetic counseling, as well as targeted treatments that restore a poor ," says Casanova, who is senior attending physician at the Rockefeller University Hospital.

Casanova and his team say that further research on CARD9 will examine its exact role in human anti-fungal immunity, tracing the signaling pathways in different cell types that give an individual the ability to fight off an infection.

Explore further: The HOIL1 gene: The cause of a new rare disease

More information: Lanternier, F. et al. Deep dermatophytosis and inherited CARD9 deficiency, New England Journal of Medicine, October 16, 2013. www.nejm.org/doi/full/10.1056/NEJMoa1208487

Related Stories

The HOIL1 gene: The cause of a new rare disease

November 1, 2012
The researcher Capucine Picard, working with the team from Inserm unit 980 "Human genetics and infections diseases"/Université Paris Descartes under the leadership of Jean-Laurent Casanova, along with researchers from a ...

Brain displays an intrinsic mechanism for fighting infection

November 19, 2012
(Medical Xpress)—White blood cells have long reigned as the heroes of the immune system. When an infection strikes, the cells, produced in bone marrow, race through the blood to fight off the pathogen. But new research ...

Molecular causes for life-threatening fungal infections in case of sepsis unravelled

July 27, 2012
(Medical Xpress) -- Pathogenic fungi cause infections with a high mortality rate in patients with weakened immune systems. At Karl Kuchler’s CD Laboratory at the MedUni Vienna, the molecular causes of the life-threatening ...

Genetic disease which causes recurrent respiratory infections discovered

October 17, 2013
Cambridge scientists have discovered a rare genetic disease which predisposes patients to severe respiratory infections and lung damage. Because the scientists also identified how the genetic mutation affects the immune system, ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.