Researchers find hormone vasopressin involved in jet lag

October 4, 2013 by Bob Yirka report
The Suprachiasmatic nucleus or SCN (shown here in a rat) is localized just dorsal to the optic chiasma, where both left and right optic nerves converge at the bottom of the brain. Here, the myelin of optic nerves is stained blue. Credit: Hitoshi Okamura and Yasuhiko Ibata

(Medical Xpress)—A team of researchers from several research centers in Japan has together found what appears to be a connection between the hormone vasopressin and jet-lag. In their paper published in the journal Science, the team describes experiments they conducted with test mice that indicate that repressing neural connections that respond to vasopressin reduced the time it took for them to readjust their circadian clock.

Adjustments to the circadian clock can be more than a nuisance for long distance flyers, research over the years has shown that it can cause stressed induced medical problems for those that work odd hours. For that reason, scientists have been looking for a way to reset the circadian clock much quicker than happens naturally. In this new effort the researchers looked at a part of the brain called the suprachiasmatic nucleus—it's believed to be the main region involved in monitoring the passage of time and hence the . Upon closer scrutiny, they found that many of the neurons in that part of the brain had receptors that were sensitive to .

To find out why, they genetically altered test to inhibit such receptors and then artificially altered their day/night schedule. They found that without the receptors the mice were able to adjust to a radically altered time schedule in just one day, as opposed to the week or more it took unaltered mice. Next, they tried giving test mice a chemical that is known to block the same receptors, but only in the brain (neurons with vasopressin sensitive receptors are found throughout the nervous system) and found the mice were able to readjust their internal clocks in three days, much faster than normal, but still not as fast as those without the .

The findings by the team suggest that a cure for may be on the way. The chemical given to the mice has not been tested yet to see if it has other side-effects, most particularly, whether it causes problems with the kidneys—vasopressin is known to play a role in causing the kidneys to retain water to help regulate salt levels throughout the body.

Explore further: Researchers discover new way to improve internal clock function

More information: Mice Genetically Deficient in Vasopressin V1a and V1b Receptors Are Resistant to Jet Lag, Science 4 October 2013: Vol. 342 no. 6154 pp. 85-90, DOI: 10.1126/science.1238599

ABSTRACT
Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a–/–V1b–/–). Nevertheless, the behavior of V1a–/–V1b–/– mice was still coupled to the internal clock, which oscillated normally under standard conditions. Experiments with suprachiasmatic nucleus (SCN) slices in culture suggested that interneuronal communication mediated by V1a and V1b confers on the SCN an intrinsic resistance to external perturbation. Pharmacological blockade of V1a and V1b in the SCN of wild-type mice resulted in accelerated recovery from jet lag, which highlights the potential of vasopressin signaling as a therapeutic target for management of circadian rhythm misalignment, such as jet lag and shift work.

Related Stories

Researchers discover new way to improve internal clock function

August 21, 2013
Overnight flights across the Atlantic, graveyard shifts, stress-induced insomnia are all prime culprits in keeping us from getting a good night's sleep. Thanks to new research from McGill University and Concordia University, ...

Study reveals why the body clock is slow to adjust to time changes

August 29, 2013
New research in mice reveals why the body is so slow to recover from jet-lag and identifies a target for the development of drugs that could help us to adjust faster to changes in time zone.

Study finds that a gene associated with longevity also regulates the body's circadian clock

June 20, 2013
Human sleeping and waking patterns are largely governed by an internal circadian clock that corresponds closely with the 24-hour cycle of light and darkness. This circadian clock also controls other body functions, such as ...

Body clock genes unravelled

May 3, 2012
International travellers, shift workers and even people suffering from obesity-related conditions stand to benefit from a key discovery about the functioning of the body's internal clock.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.