Power of precision medicine shown in successful treatment of patient with disabling OCD

October 3, 2013, Cold Spring Harbor Laboratory

A multidisciplinary team led by a geneticist and psychiatrist from Cold Spring Harbor Laboratory's (CSHL) Stanley Institute for Cognitive Genomics today publish a paper providing a glimpse of both the tremendous power and the current limitations of what is sometimes called "precision medicine."

Precision medicine is an approach to diagnosis and that tailors therapeutic care to individuals in a highly specific manner, and which brings to bear powerful new technologies that have not yet made it into the mainstream of clinical medicine, in part because they remain unproven.

Gholson J. Lyon, M.D., Ph.D., a CSHL researcher in molecular genetics and also a practicing psychiatrist, and collaborators at the University of Utah, the Utah Foundation for Biomedical Research (UFBR) and the companies Omicia, Inc. and AssureRx, report on their recruitment and treatment of a single patient with severe psychiatric illness. The man, identified as a 37-year-old U.S. military veteran, suffered from a form of obsessive-compulsive disorder (OCD) that rendered him completely disabled – profoundly compulsive and anxious, occasionally paranoid, and unable to hold a job or form meaningful relationships.

Over the past three years, the team successfully treated the man with an experimental form of electrical brain stimulation, called deep-brain stimulation (DBS). To date, DBS has been used most frequently to lessen symptoms in people with advanced Parkinson's disease and also on an experimental basis to help lift otherwise untreatable, severe depression. Worldwide, only around 100 other people with OCD have been reported to have received DBS treatment on a trial basis. This was the first such instance, however, in which an individual with such severe mental illness, being treated with DBS, also consented to and received whole-genome sequencing, and rigorous post-sequencing analysis of the results, accompanied by genetic counseling.

Integrating the results

Each phase of the study generated significant data; but never had such data been integrated in the context of a single clinical psychiatric case. The results, which appear online today in the journal PeerJ, show that the patient was greatly helped by DBS. Over the treatment period, symptoms associated with OCD diminished to the point that the individual was able to "regain a quality of life that he had not previously experienced in over 15 years," Dr. Lyon and colleagues report. As the electrical stimulation of his brain via DBS was optimized over time (this involved gradually increasing the voltage used in ), he was able to participate in regular exercise, work as a volunteer, and eventually meet someone and get married.

The researchers noted that several times during the treatment, when power from the battery that drives the DBS signals was either drained or not activated by the patient, symptoms of severe OCD returned over the course of 12-24 hours and rapidly became debilitating. This was both a powerful lesson to the patient to keep the device charged (the battery is rechargeable) and vivid evidence to the scientists regarding the device's role in producing the patient's observed symptomatic improvements.

Whole-genome sequencing, meantime, revealed that the patient carries at least three gene variants, or alleles, that have been associated in other studies with neuropsychiatric illness. These variants were in genes that encode proteins called BDNF, MTHFR and ChAT. The BDNF is of particular interest. Its protein is a prime growth factor essential in the early development and subsequent healthy function of the brain and nervous system. The other two variants have also been associated in past studies with possibly increasing the risks of .

Other gene variants were found that have implications for the way the patient is either able or unable to metabolize particular kinds of drugs. These and literally thousands of other bits of personal genomic information had no immediate impact on his treatment or prognosis, but were archived by Dr. Lyon's team in the hope that at some later date they might be useful. One of the gene variants did prompt a referral for an eye exam, which revealed bilateral cataracts and poor night vision in this person, which the investigators are currently following up.

"Although we believe in archiving and managing all genetic results and not just a small subset of presently-known 'risk genes,' we did analyze the 57 genes in our subject's genome that are currently recommended for 'return of results' to patients by the American College of Medical Genetics," Dr. Lyon and the team notes.

"I met with this individual to go over the results with him" Dr. Lyon adds, "along with adding some of the findings into his paper-based . We also contacted physicians and other officials at the US Veterans Administration office to offer to incorporate these data into the VA electronic medical record for this patient. We were told, however, that there is no current capacity at the VA to incorporate any genomic variant data."

The inability even to enter the data in existing electronic health record databases points to the practical problems that remain in using comprehensive data sets to help evaluate and treat in a clinical context.

The team, however, believes its results demonstrate that "one can learn a substantial amount from detailed study of particular individuals," and argues that "we are entering an era of precision medicine in which we can learn from and collect substantial data on informative individual cases." They further note: "The genomic we gathered would have been more helpful if obtained much earlier in the patient's medical course, as it could have provided guidance on which medications to avoid or to provide in increased doses."

Explore further: Neurosurgeon provides 'asleep' option for patients undergoing DBS surgery

More information: "Integrating precision medicine in the study and clinical treatment of a severely mentally ill person" appears online October 3, 2013 in the journal PeerJ.

Related Stories

Neurosurgeon provides 'asleep' option for patients undergoing DBS surgery

September 11, 2013
Patients who undergo deep brain stimulation (DBS) surgery to control life-disrupting symptoms caused by Parkinson's disease and other movement disorders traditionally have been awake during the procedure. Today, patients ...

Medtronic device will collect data as it treats brain disorders

August 13, 2013
A new deep brain stimulation system by Medtronic can sense and record brain activity at the same time it delivers therapy to treat Parkinson's symptoms, essential tremors and epilepsy. The data collected by the Activa PC+S ...

Scientists pinpoint how deep brain stimulation eases OCD

February 24, 2013
(HealthDay)—Deep brain stimulation has helped people with severe obsessive-compulsive disorder, and new research begins to explain why.

Study finds factors that may cause fluctuations in deep brain stimulation levels over time

July 11, 2013
Deep brain stimulation therapy blocks or modulates electrical signals in the brain to improve symptoms in patients suffering from movement disorders such as Parkinson's disease, essential tremor and dystonia, but a new study ...

Butler and Rhode Island hospitals to test 'brain pacemaker' for Alzheimer's disease

June 6, 2013
Together, Butler Hospital and Rhode Island Hospital are participating in The ADvance Study, a clinical trial investigating the use of deep brain stimulation (DBS) as a treatment for patients with Alzheimer's disease. The ...

Responsive brain stimulation could improve life for Parkinson's sufferers

July 15, 2013
(Medical Xpress)—Researchers in Oxford have demonstrated a significant improvement in the treatment of advanced Parkinson's disease with deep brain stimulation.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.