Understanding ourselves by studying the animal kingdom

November 12, 2013, Society for Neuroscience

Research released today reveals a new model for a genetic eye disease, and shows how animal models—from fruit flies to armadillos and monkeys—can yield valuable information about the human brain. The findings were presented at Neuroscience 2013, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.

Animal models have long been central in how we understand the , behavior, and nervous system due to similarities in many areas and functions across species. Almost every major medical advance in the last century was made possible by carefully regulated, humane animal research. Today's findings build on this rich history and demonstrate what animals can teach us about ourselves.

Today's new findings show that:

  • The nine-banded armadillo may serve as a model for certain types of progressive blindness. The animal's poor eyesight mimics many human disorders and may shed light on new treatment approaches for such diseases (Christopher Emerling, BS, abstract 150.06, see attached summary).
  • Analysis of a baboon population reveals particular genes that may be involved in creating the "folds" in the structure of the brain. These findings provide information on how human genes may have evolved to create the brain's shape and function (Elizabeth Atkinson, BA, abstract 195.13, see attached summary).
  • Monkeys and humans use similar brain pathways while processing decisions. Detailed analyses of similarities and differences in brain wiring could provide new insights into decision-making in humans (Franz-Xaver Neubert, abstract 18.03, see attached summary).

Other recent findings discussed show that:

  • Use of powerful genetic tools in is helping to reveal the basic building blocks of brain circuitry and function. This work is furthering our understanding of the human brain and may be helpful in developing (Rachel Wilson, PhD, presentation 302, see attached speaker summary).
  • Research in a tiny worm (C. elegans) has allowed scientists to map all of the connections between neurons in the species, including the pathways for movement, sex, and more. The findings offer new insights into how the human nervous system functions (Scott Emmons, PhD, presentation 009, see attached speaker summary).

"Neuroscience has always relied on responsible animal research to better understand how our brains and bodies develop, function, and break down," said press conference moderator Leslie Tolbert, of the University of Arizona, whose work in insects provides insights into brain development. "Today's studies reveal new ways that research on unlikely-seeming animals, such as armadillos, fruit flies, and worms, could have real impact on our understanding of the human brain and what can go wrong in disease."

Explore further: Studies pinpoint specific brain areas and mechanisms associated with depression and anxiety

Related Stories

Studies pinpoint specific brain areas and mechanisms associated with depression and anxiety

November 11, 2013
Research released today reveals new mechanisms and areas of the brain associated with anxiety and depression, presenting possible targets to understand and treat these debilitating mental illnesses. The findings were presented ...

Hormones impact stress, memories, and understanding social cues

November 11, 2013
Research released today demonstrates unexpected roles that sex hormones may play in the cognitive function of females, including memory and interpreting social cues. Additionally, a chemical identified in pregnant mice may ...

New evidence on the biological basis of highly impulsive and aggressive behaviors

November 10, 2013
Physical and chemical changes in the brain during development can potentially play a role in some delinquent and deviant behaviors, according to research released today. Studies looking at the underlying mechanisms that influence ...

Nurture impacts nature: Experiences leave genetic mark on brain, behavior

November 11, 2013
New human and animal research released today demonstrates how experiences impact genes that influence behavior and health. Today's studies, presented at Neuroscience 2013, the annual meeting of the Society for Neuroscience ...

Research reveals new understanding, warning signs, and potential treatments for multiple sclerosis

November 10, 2013
Scientists are gaining a new level of understanding of multiple sclerosis (MS) that may lead to new treatments and approaches to controlling the chronic disease, according to new research released today at Neuroscience 2013, ...

Research reveals roles for exercise and diet in aging, depression

November 10, 2013
New studies released today underscore the potential impact of healthy lifestyle choices in treating depression, the effects of aging, and learning. The research focused on the effects of mind/body awareness, exercise, and ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.