The benefits of a spotless mind

November 15, 2013
Figure 1: Mice lacking autophagy and with high levels of Aβ (right) have degenerated brain structures compared with normal mice (left).Credit: P. Nilsson et al.

Alzheimer's disease is an age-related memory disorder characterized by the accumulation of clumps of the toxic amyloid-β (Aβ) protein fragment in the extracellular space around neurons in the brain. Drugs that help to 'clean up' cells by inducing autophagy—the degradation of unnecessary cellular components—are known to lower Aβ levels within cells and have been shown to rescue memory deficits in mice. A team of researchers including Per Nilsson and Takaomi Saido from the RIKEN Brain Science Institute have now found that autophagy also plays an important role in secreting Aβ from the cell into the extracellular space.

The researchers set out to investigate what would happen to extracellular Aβ aggregates, called plaques, when genetic methods were used to eliminate the autophagy process. They started with transgenic mice commonly used as a model for Alzheimer's disease. These mice have high levels of Aβ and Aβ plaque accumulation in their brains, and display learning and . Surprisingly, in genetically engineered variants of these mice lacking autophagy-related gene 7 (Atg7), which is required for normal autophagy, the researchers found fewer extracellular Aβ plaques in the brain; instead, the Aβ seemed to accumulate inside the neurons. Conversely, increasing the expression of the Atg7 protein in neurons grown in cell culture resulted in an increase in the release of Aβ from the cells into the tissue culture medium. The findings suggest that autophagy is required for the secretion of Aβ from neurons into the extracellular environment.

Mice with an elevated expression of Aβ but defective autophagy seemed to have degenerated brain structures, as well as sicker neurons—as defined by their expression of markers of cell death—and worse learning and memory functions than mice with high Aβ expression but normal autophagy. This result indicates that autophagy is important for maintaining normal neuronal function and cognition in Alzheimer's disease. Moreover, because autophagy lowers Aβ levels within the cell, the researchers deduced that intracellular Aβ may be more toxic than extracellular Aβ with respect to inducing neuronal dysfunction and memory impairment.

The findings suggest that the effectiveness of therapeutic strategies for Alzheimer's disease may be improved by targeting the elimination of intracellular Aβ deposits rather than extracellular plaques. "Intraneuronal Aβ accumulation is seen in early Alzheimer's disease in humans, similar to what we found upon autophagy deletion in ," explains Nilsson. "Targeting this pool of Aβ may therefore offer a potential treatment for Alzheimer's ," he says.

Explore further: Understanding the molecular mechanisms underlying Alzheimer's disease

More information: "Aβ Secretion and Plaque Formation Depend on Autophagy," Nilsson, Krishnapriya Loganathan, Misaki Sekiguchi, Yukio Matsuba, Kelvin Hui, Satoshi Tsubuki, Motomasa Tanaka, Nobuhisa Iwata, Takashi Saito, Takaomi C. Saido. Cell Reports - 17 October 2013 (Vol. 5, Issue 1, pp. 61-69) DOI: 10.1016/j.celrep.2013.08.042

Related Stories

Understanding the molecular mechanisms underlying Alzheimer's disease

June 10, 2013
The accumulation of amyloid-β (Aβ) in the brains of Alzheimer's disease (AD) patients is known to be associated with memory loss and neuronal degeneration, but the mechanism of Aβ pathogenesis is not fully understood.

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

October 3, 2013
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes ...

Study examines amyloid deposition in patients with traumatic brain injury

November 11, 2013
Patients with traumatic brain injury (TBI) had increased deposits of β-Amyloid (Aβ) plaques, a hallmark of Alzheimer Disease (AD), in some areas of their brains in a study by Young T. Hong, Ph.D., of the University of Cambridge, ...

Alzheimer's collaboration brings time-course to equation

October 3, 2013
Scientists from Western Australia and across the nation have shown the accumulation of a protein in the brain occurs 20 years before symptoms of Alzheimer's occur, in a groundbreaking study that could prove beneficial for ...

Discovery sheds light on why Alzheimer's meds rarely help

July 1, 2013
New research reveals that the likely culprit behind Alzheimer's disease has a different molecular structure than current drugs' target—perhaps explaining why these medications produce little improvement in patients.

Tracing the impact of amyloid beta in mild cognitive impairment

January 15, 2013
The amount of amyloid β (Aβ) in the brains of people with mild cognitive impairment (MCI) is contributing to early memory loss, and increases with severity of symptoms, finds a study in BioMed Central's open access journal ...

Recommended for you

Alzheimer's Tau protein forms toxic complexes with cell membranes

November 22, 2017
The brains of patients with Alzheimer's disease contain characteristic tangles inside neurons. These tangles are formed when a protein called Tau aggregates into twisted fibrils. As a result, the neurons' transport systems ...

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Researchers describe new biology of Alzheimer's disease

November 20, 2017
In a new study, researchers from Boston University School of Medicine (BUSM) describe a unique model for the biology of Alzheimer's disease (AD) which may lead to an entirely novel approach for treating the disease. The findings ...

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.