Gene-silencing study finds new targets for Parkinson's disease

November 24, 2013, National Institutes of Health

Scientists at the National Institutes of Health have used RNA interference (RNAi) technology to reveal dozens of genes which may represent new therapeutic targets for treating Parkinson's disease. The findings also may be relevant to several diseases caused by damage to mitochondria, the biological power plants found in cells throughout the body.

"We discovered a network of genes that may regulate the disposal of dysfunctional , opening the door to new drug targets for Parkinson's disease and other disorders," said Richard Youle, Ph.D., an investigator at the National Institute of Neurological Disorders and Stroke (NINDS) and a leader of the study. The findings were published online in Nature. Dr. Youle collaborated with researchers from the National Center for Advancing Translational Sciences (NCATS).

Mitochondria are tubular structures with rounded ends that use oxygen to convert many chemical fuels into adenosine triphosphate, the main energy source that powers . Multiple neurological disorders are linked to genes that help regulate the health of mitochondria, including Parkinson's, and movement diseases such as Charcot-Marie Tooth Syndrome and the ataxias.

Some cases of Parkinson's disease have been linked to mutations in the gene that codes for parkin, a protein that normally roams inside cells, and tags damaged mitochondria as waste. The damaged mitochondria are then degraded by cells' lysosomes, which serve as a biological trash disposal system. Known mutations in parkin prevent tagging, resulting in accumulation of unhealthy mitochondria in the body.

RNAi is a natural process occurring in cells that helps regulate genes. Since its discovery in 1998, scientists have used RNAi as a tool to investigate gene function and their involvement in health and disease.

Dr. Youle and his colleagues worked with Scott Martin, Ph.D., a coauthor of the paper and an NCATS researcher who is in charge of NIH's RNAi facility. The RNAi group used robotics to introduce small interfering RNAs (siRNAs) into to individually turn off nearly 22,000 genes. They then used automated microscopy to examine how silencing each gene affected the ability of parkin to tag mitochondria.

"One of NCATS' goals is to develop, leverage and improve innovative technologies, such as RNAi screening, which is used in collaborations across NIH to increase our knowledge of gene function in the context of human disease," said Dr. Martin.

For this study, the researchers used RNAi to screen human cells to identify genes that help parkin tag damaged mitochondria. They found that at least four genes, called TOMM7, HSPAI1L, BAG4 and SIAH3, may act as helpers. Turning off some genes, such as TOMM7 and HSPAI1L, inhibited parkin tagging whereas switching off other genes, including BAG4 and SIAH3, enhanced tagging. Previous studies showed that many of the genes encode proteins that are found in mitochondria or help regulate a process called ubiquitination, which controls protein levels in cells.

Next the researchers tested one of the genes in human nerve cells. The researchers used a process called induced pluripotent stem cell technology to create the cells from human skin. Turning off the TOMM7 gene in nerve cells also appeared to inhibit tagging of mitochondria. Further experiments supported the idea that these genes may be new targets for treating neurological disorders.

"These genes work like quality control agents in a variety of cell types, including neurons," said Dr. Youle. "The identification of these helper provides the research community with new information that may improve our understanding of Parkinson's disease and other neurological disorders."

The RNAi screening data from this study are available in NIH's public database, PubChem, which any researcher may analyze for additional information about the role of dysfunctional mitochondria in neurological disorders.

"This study shows how the latest high-throughput genetic technologies can rapidly reveal insights into fundamental disease mechanisms," said Story Landis, Ph.D., director of the NINDS. "We hope the results will help scientists around the world find new treatments for these devastating disorders."

Explore further: Unleashing the watchdog protein

More information: Hasson SA et al. "Genome-wide high-content RNAi screens identify regulators of parkin in selective mitophagy." Nature, November 24, 2013, DOI: 10.1038/nature12748

Related Stories

Unleashing the watchdog protein

May 9, 2013
McGill University researchers have unlocked a new door to developing drugs to slow the progression of Parkinson's disease. Collaborating teams led by Dr. Edward A. Fon at the Montreal Neurological Institute and Hospital -The ...

Genetic mutations linked to Parkinson's disease

August 11, 2013
Researchers have discovered how genetic mutations linked to Parkinson's disease might play a key role in the death of brain cells, potentially paving the way for the development of more effective drug treatments.

Mutations in VCP gene implicated in a number of neurodegenerative diseases

March 14, 2013
New research, published in Neuron, gives insight into how single mutations in the VCP gene cause a range of neurological conditions including a form of dementia called Inclusion Body Myopathy, Paget's Disease of the Bone ...

Parkinson's disease: Parkin protects from neuronal cell death

March 1, 2013
Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich identify a novel signal transduction pathway, which activates the parkin gene and prevents stress-induced neuronal cell death.

Researchers discover how brain cells change their tune (w/ Video)

July 25, 2013
Brain cells talk to each other in a variety of tones. Sometimes they speak loudly but other times struggle to be heard. For many years scientists have asked why and how brain cells change tones so frequently. Today National ...

Recommended for you

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

New brainstem changes identified in Parkinson's disease

January 4, 2018
A pioneering study has found that patients with Parkinson's disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Caffeine level in blood may help diagnose people with Parkinson's disease

January 3, 2018
Testing the level of caffeine in the blood may provide a simple way to aid the diagnosis of Parkinson's disease, according to a study published in the January 3, 2018, online issue of Neurology, the medical journal of the ...

Researchers shed light on why exercise slows progression of Parkinson's disease

December 22, 2017
While vigorous exercise on a treadmill has been shown to slow the progression of Parkinson's disease in patients, the molecular reasons behind it have remained a mystery.

Robotic device improves balance and gait in Parkinson's disease patients

December 19, 2017
Some 50,000 people in the U.S. are diagnosed with Parkinson's disease (PD) every year. The American Institute of Neurology estimates there are one million people affected with this neurodegenerative disorder, with 60 years ...

New findings point to potential therapy for Parkinson's Disease

December 19, 2017
A new study, published in Proceedings of the National Academy of Sciences (PNAS), sheds light on a mechanism underlying Parkinson's disease and suggests that Tacrolimus—an existing drug that targets the toxic protein interaction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.