New link between obesity and diabetes found

November 21, 2013, Columbia University Medical Center

A single overactive enzyme worsens the two core defects of diabetes—impaired insulin sensitivity and overproduction of glucose—suggesting that a drug targeting the enzyme could help correct both at once, according to mouse studies done by researchers at Columbia University Medical Center. The findings were published today in the online edition of Cell Metabolism.

A that inhibits the enzyme, MK2, eventually could be added to metformin—the current first-line treatment for type 2 diabetes—to achieve better control over insulin and than is possible with either drug alone, said the researchers.

"MK2's compatibility with metformin makes it a very exciting potential drug target," said Ira Tabas, MD, PhD, Richard J. Stock Professor and Vice Chair of Research in the Department of Medicine and professor of anatomy & cell biology (in physiology and cellular biophysics), who led the study with Lale Ozcan, PhD, associate research scientist.

"The one clear leader among drugs currently available for type 2 diabetes is metformin, which does a pretty good job of attacking both problems. But because metformin is often not enough, we need drugs that can be added to metformin—or used in patients who cannot tolerate metformin," Dr. Tabas said. "If you take an obese, diabetic mouse and give it metformin, you get a partial improvement. If you give it an MK2-inhibitor, you also get a partial improvement. However, if you give both, the benefit is additive, which is consistent with our data that metformin and MK2 work through different biochemical pathways."

The researchers' earlier findings, on MK2's effects on glucose, were published last year in the same journal.

Though both papers report the biochemical details of how MK2 works in mice, Drs. Tabas and Ozcan, working with CUMC surgeons Marc Bessler, MD, and Beth Schrope, MD, PhD, also have recent unpublished data suggesting that MK2 is overactive in obese people, including those with pre-diabetes, but not in lean people. Moreover, the MK2 pathway is active in human liver cells, and, according to a large human genetic study called DIAGRAM, a key component of the pathway that activates MK2 is associated with diabetes.

About 25.8 million people in the U.S. and 347 people worldwide have diabetes (mostly type 2). According to the Centers for Disease Control and Prevention, each year, about 6 percent of people with pre-diabetes develop ; unless they make lifestyle changes, about 15 to 30 percent will develop diabetes within five years. "In addition to improving and glucose levels, our data suggest to us that a drug that inhibits MK2 could prevent the progression of pre-diabetes to full diabetes," Dr. Tabas said.

Such a drug could protect the cells that produce insulin. "As the disease progresses, the insulin-producing cells have to put out more and more insulin to deal with the ever-increasing amounts of glucose in the bloodstream. Eventually, they burn out and the patient must use insulin," Dr. Tabas said. "If we can protect the pancreas's beta cells from the stress of dealing with high glucose, we may be able to prevent or delay progression to full diabetes."

Drs. Tabas and Ozcan are planning to test this hypothesis with pre-diabetic mice.

Inhibiting MK2 also reduces cholesterol

Unpublished data from Drs. Tabas and Ozcan also suggest that MK2 inhibitors may not carry the cardiovascular risks associated with several newer diabetes drugs. Because of these risks, the FDA will not approve a new diabetes drug unless it has been found to be safe in large clinical trials designed to detect cardiovascular risk.

The Columbia researchers' mouse studies show that MK2 inhibition reduces cholesterol, and other researchers have found that MK2 deficiency in mice protects against atherosclerosis. "A drug that inhibits MK2 may not just be heart-safe, but may actually be cardio-protective," Dr. Tabas said.

He and Dr. Ozcan have created a company to develop compounds able to inhibit MK2.

"As with all drug development, it's a long shot, but we think MK2 is less of a long shot than most."

Drs. Tabas' and Ozcan's paper is titled, "Activation of Calcium/Calmodulin-Dependent Protein Kinase II in Obesity Mediates Suppression of Hepatic Insulin Signaling."

Explore further: Biologists ID new cancer weakness

Related Stories

Biologists ID new cancer weakness

November 14, 2013
About half of all cancer patients have a mutation in a gene called p53, which allows tumors to survive and continue growing even after chemotherapy severely damages their DNA.

Team unlocks secrets of diabetes drug: How and why metformin needs to interact with insulin to be effective

November 3, 2013
About 120 million people around the world with Type 2 diabetes – and two million in Canada – take the drug metformin to control their disease.

Targeting glucagon pathway may offer a new approach to treating diabetes

April 12, 2012
Maintaining the right level of sugar in the blood is the responsibility not only of insulin, which removes glucose, but also of a hormone called glucagon, which adds glucose.

Common diabetes drug fails to fulfill promise of improving cardiovascular risk in people without diabetes

November 6, 2013
Despite high expectations for the commonly used diabetes drug metformin to improve risk factors for heart disease in people without diabetes, few beneficial effects have been found in a randomised trial of patients with established ...

Metformin usually adequate for control of gestational diabetes

August 18, 2013
(HealthDay)—Among women with gestational diabetes mellitus, those receiving metformin achieve lower mean glucose levels compared with those receiving insulin, but some require supplemental insulin therapy, according to ...

Common diabetes drugs may carry risk, study suggests

September 26, 2013
(HealthDay)—Diabetes patients who take drugs called sulfonylureas as an initial therapy have a higher risk of death than those who take the diabetes drug metformin, a new study says.

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.