Targeting glucagon pathway may offer a new approach to treating diabetes

April 12, 2012

Maintaining the right level of sugar in the blood is the responsibility not only of insulin, which removes glucose, but also of a hormone called glucagon, which adds glucose.

For decades, treatments for type II have taken aim at , but a new study suggests that a better approach may be to target glucagon's sweetening effect.

The findings were published today in the online edition of .

"What we've found is a way to reduce glucagon's influence on without the side effects of global ," said Ira Tabas, MD, PhD, Richard J. Stock Professor and Vice Chair of Research in the Department of Medicine and professor of Anatomy & Cell Biology (in Physiology and Cellular Biophysics), who led the study with Lale Ozcan, PhD, associate research scientist.

Though glucagon was discovered at the same time as insulin, research on it has languished compared with that of its cousin, and treatments have almost exclusively targeted the latter.

In the last decade, the success of incretins, a new class of drugs for type II diabetes, has sparked a renaissance in glucagon research. When they were first introduced, incretins were known to stimulate insulin secretion. But recent studies show that a significant part of their clinical success can be attributed to previously unsuspected inhibiting effects on glucagon secretion.

The experience with incretin has led to a renewed search for other drugs that act against glucagon, including compounds that block glucagon in the liver, where it acts to free glucose. Drugs that block the glucagon receptor in the liver have been tested, but glucagon has multiple roles, and recent early clinical trials show that it can raise cholesterol and lead to fat accumulation in the liver.

The new study shows how glucagon's effect on glucose could be disrupted without disturbing glucagon's other duties, raising prospects for a safer anti-glucagon diabetes treatment.

Drs. Tabas and Ozcan found that once glucagon binds to its receptor, glucose is fully released only after an enzyme called CaMKII is activated. When activated, CaMKII sends a protein called FoxO1 into the cell nucleus, where it turns on the genes needed for secretion. A related pathway, working in parallel to this one, sends a FoxO1 helper protein into the cell nucleus, as reported in a paper on which Dr. Tabas is a co-author, published online on April 8 in Nature (embargoed until that time).

"Even when their disease is well controlled, most patients with have excess glucagon action, so blocking CaMKII could potentially be a new way to lower blood sugar and better treat the disease," said Dr. Tabas.

When the researchers blocked CaMKII in obese, diabetic mice, the animals' blood sugar went down, with no negative side effects. Instead, cholesterol declined, insulin sensitivity improved, and the liver became less fatty.

"Until now, it has been difficult to block glucagon's effect on blood sugar without interfering with glucagon's other functions," said Dr. Tabas, "but we think CaMKII is different."

Dr. Tabas is now working on the possibility of developing a CaMKII inhibitor to treat diabetes.

Explore further: Researchers discover protein that may represent new target for treating type 1 diabetes

More information: Drs. Ozcan's and Tabas' paper is titled, "Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity."

Related Stories

Researchers discover protein that may represent new target for treating type 1 diabetes

January 4, 2012
Researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine and colleagues have discovered a new protein that may play a critical role in how the human body regulates blood sugar levels. Reporting ...

Research reveals hormone action that could lead to treatments for type 2 diabetes

September 30, 2011
(Medical Xpress) -- Researchers at the University of Cincinnati have discovered that the immediate improvement in blood sugar (blood glucose) for those with type 2 diabetes who undergo gastric bypass surgery is related to ...

Study finds molecular switch that controls liver glucose production, may offer target for type II diabetes therapy

April 8, 2012
In their extraordinary quest to decode human metabolism, researchers at the Salk Institute for Biological Studies have discovered a pair of molecules that regulates the liver's production of glucose -- the simple sugar that ...

Recommended for you

Insulin pill may delay type 1 diabetes in some

November 21, 2017
(HealthDay)—It's often said that timing is everything. New research suggests this may be true when giving an insulin pill to try to prevent or delay type 1 diabetes.

Controlling diabetes with your phone might be possible someday

November 21, 2017
Think about this. You have diabetes, are trying to control your insulin levels and instead of taking a pill or giving yourself an injection, you click an app on your phone that tells your pancreas to bring blood sugar levels ...

Simple test predicts diabetes remission following weight loss surgery

November 21, 2017
A new simple test that helps predicts which people with type 2 diabetes will benefit most from weight loss surgery has been developed by a UCL-led team.

Pre-diabetes discovery marks step towards precision medicine

November 20, 2017
Researchers from the University of Sydney's Charles Perkins Centre have identified three specific molecules that accurately indicate insulin resistance, or pre-diabetes - a major predictor of metabolic syndrome, the collection ...

Scientists reverse diabetes in a mouse model using modified blood stem cells

November 15, 2017
Researchers at Boston Children's Hospital have successfully reversed type 1 diabetes in a mouse model by infusing blood stem cells pre-treated to produce more of a protein called PD-L1, which is deficient in mice (and people) ...

Pregnancy-related conditions taken together leave moms—and dads—at risk

November 14, 2017
Research has already shown that women who develop either diabetes or high blood pressure during pregnancy are at risk of getting type 2 diabetes, high blood pressure or heart disease years later. Now, a new study from a team ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.