Targeting glucagon pathway may offer a new approach to treating diabetes

April 12, 2012

Maintaining the right level of sugar in the blood is the responsibility not only of insulin, which removes glucose, but also of a hormone called glucagon, which adds glucose.

For decades, treatments for type II have taken aim at , but a new study suggests that a better approach may be to target glucagon's sweetening effect.

The findings were published today in the online edition of .

"What we've found is a way to reduce glucagon's influence on without the side effects of global ," said Ira Tabas, MD, PhD, Richard J. Stock Professor and Vice Chair of Research in the Department of Medicine and professor of Anatomy & Cell Biology (in Physiology and Cellular Biophysics), who led the study with Lale Ozcan, PhD, associate research scientist.

Though glucagon was discovered at the same time as insulin, research on it has languished compared with that of its cousin, and treatments have almost exclusively targeted the latter.

In the last decade, the success of incretins, a new class of drugs for type II diabetes, has sparked a renaissance in glucagon research. When they were first introduced, incretins were known to stimulate insulin secretion. But recent studies show that a significant part of their clinical success can be attributed to previously unsuspected inhibiting effects on glucagon secretion.

The experience with incretin has led to a renewed search for other drugs that act against glucagon, including compounds that block glucagon in the liver, where it acts to free glucose. Drugs that block the glucagon receptor in the liver have been tested, but glucagon has multiple roles, and recent early clinical trials show that it can raise cholesterol and lead to fat accumulation in the liver.

The new study shows how glucagon's effect on glucose could be disrupted without disturbing glucagon's other duties, raising prospects for a safer anti-glucagon diabetes treatment.

Drs. Tabas and Ozcan found that once glucagon binds to its receptor, glucose is fully released only after an enzyme called CaMKII is activated. When activated, CaMKII sends a protein called FoxO1 into the cell nucleus, where it turns on the genes needed for secretion. A related pathway, working in parallel to this one, sends a FoxO1 helper protein into the cell nucleus, as reported in a paper on which Dr. Tabas is a co-author, published online on April 8 in Nature (embargoed until that time).

"Even when their disease is well controlled, most patients with have excess glucagon action, so blocking CaMKII could potentially be a new way to lower blood sugar and better treat the disease," said Dr. Tabas.

When the researchers blocked CaMKII in obese, diabetic mice, the animals' blood sugar went down, with no negative side effects. Instead, cholesterol declined, insulin sensitivity improved, and the liver became less fatty.

"Until now, it has been difficult to block glucagon's effect on blood sugar without interfering with glucagon's other functions," said Dr. Tabas, "but we think CaMKII is different."

Dr. Tabas is now working on the possibility of developing a CaMKII inhibitor to treat diabetes.

Explore further: Researchers discover protein that may represent new target for treating type 1 diabetes

More information: Drs. Ozcan's and Tabas' paper is titled, "Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity."

Related Stories

Researchers discover protein that may represent new target for treating type 1 diabetes

January 4, 2012
Researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine and colleagues have discovered a new protein that may play a critical role in how the human body regulates blood sugar levels. Reporting ...

Research reveals hormone action that could lead to treatments for type 2 diabetes

September 30, 2011
(Medical Xpress) -- Researchers at the University of Cincinnati have discovered that the immediate improvement in blood sugar (blood glucose) for those with type 2 diabetes who undergo gastric bypass surgery is related to ...

Study finds molecular switch that controls liver glucose production, may offer target for type II diabetes therapy

April 8, 2012
In their extraordinary quest to decode human metabolism, researchers at the Salk Institute for Biological Studies have discovered a pair of molecules that regulates the liver's production of glucose -- the simple sugar that ...

Recommended for you

Personalized blood sugar goals can save diabetes patients thousands

December 11, 2017
A cost analysis by researchers at the University of Chicago Medicine shows treatment plans that set individualized blood sugar goals for diabetes patients, tailored to their age and health history, can save $13,546 in health ...

Kidney disease increases risk of diabetes, study shows

December 11, 2017
Diabetes is known to increase a person's risk of kidney disease. Now, a new study from Washington University School of Medicine in St. Louis suggests that the converse also is true: Kidney dysfunction increases the risk of ...

Type 2 diabetes is not for life

December 5, 2017
Almost half of the patients with Type 2 diabetes supported by their GPs on a weight loss programme were able to reverse their diabetes in a year, a study has found.

Skipping breakfast disrupts 'clock genes' that regulate body weight

November 30, 2017
Irregular eating habits such as skipping breakfast are often associated with obesity, type 2 diabetes, hypertension and cardiovascular disease, but the precise impact of meal times on the body's internal clock has been less ...

Type 2 diabetes has hepatic origins

November 28, 2017
Affecting as many as 650 million people worldwide, obesity has become one of the most serious global health issues. Among its detrimental effects, it increases the risk of developing metabolic conditions, and primarily type ...

Critical link between obesity and diabetes has been identified

November 28, 2017
UT Southwestern researchers have identified a major mechanism by which obesity causes type 2 diabetes, which is a common complication of being overweight that afflicts more than 30 million Americans and over 400 million ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.