Root of birth defects grounded in early embryonic development

November 14, 2013 by Bill Hathaway
Root of birth defects grounded in early embryonic development
Cilia on the skin of frog embryos.

(Medical Xpress)—The search for the cause of devastating birth defects has led Yale School of Medicine researchers to a key insight into the biology of embryonic development.

A genetic mutation associated with disrupts a key signaling mechanism and leads to a form of defect associated with misalignment of major organs, the Yale team reports in the Nov. 13 online edition of the journal Nature. The results in frogs build upon earlier research conducted at Yale that shows that the correct left-right orientation of organs in developing embryos depends upon the proper functioning of —or tiny hair-like structures on cells.

"As a critical care physician, I care for infants that have birth defects, such as holes in the heart, and it is frustrating not to know the cause of these pathologies," said Mustafa Khokha, associate professor of pediatrics and of genetics and senior author of the paper. "Now we have gained insight into the basic biology of the condition thanks to observations of these tiny patients."

In developed countries, birth defects are now the leading cause of infant mortality. Some heart defects, such as holes in the heart or "blue baby" syndrome are caused by improper orientation of organs in the body. In previous work along with others, Martina Brueckner of Yale revealed tiny hair-like structures on cells called cilia could be the cause. Her lab showed cilia come in two "flavors": and immotile cilia. Motile cilia act as subcellular paddles on fetal cells to drive fluid flow leftward. Immotile cilia sense this leftward fluid flow, which is crucial for the proper left-right orientation of organs in the developing embryo. However, the mechanism that determines whether cilia will be motile or immotile was unknown.

Previously, Brueckner and team conducted a genomic analysis of patients with and discovered a deletion in the gene galnt11 in a single child. The new study shows Galnt11 regulates Notch, a crucial signaling pathway instrumental in . Coordination between Galnt11 and Notch determines if cilia are to be of the motile or immotile variety. Alterations in the balance of these two cilia types cause birth defects.

"It is crucial to understand the causes of these if we are to create tests that can diagnose them and provide important genetic counseling and prognosis," Khokha said.

"But now with the new human genomics tools, we are finding the genetic causes that eluded us for so long and in the process are learning a lot about how we are put together," Khokha said.

Explore further: Surprising mechanism discovered in polycystic kidney disease

More information: www.nature.com/nature/journal/ … ull/nature12723.html

Related Stories

Surprising mechanism discovered in polycystic kidney disease

July 29, 2013
A study by Yale researchers has uncovered a new and unexpected molecular mechanism in the development of polycystic kidney disease, or PKD. The study appears in Nature Genetics.

Cilia guide neuronal migration in developing brain

November 12, 2012
A new study demonstrates the dynamic role cilia play in guiding the migration of neurons in the embryonic brain. Cilia are tiny hair-like structures on the surfaces of cells, but here they are acting more like radio antennae.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.