How visual representations are improved by reducing noise in the brain

November 6, 2013
A rhesus macaque (macaca mulatta) during a neuroscientific test at the DPZ. Credit: Lalitta Suriya-Arunroy

Neuroscientist Suresh Krishna from the German Primate Center (DPZ) in cooperation with Annegret Falkner and Michael Goldberg at Columbia University, New York has revealed how the activity of neurons in an important area of the rhesus macaque's brain becomes less variable when they represent important visual information during an eye movement task. This reduction in variability can improve the perceptual strength of attended or relevant aspects in a visual scene, and is enhanced when the animals are more motivated to perform the task.

Humans may see the same object again and again, but their brain response will be different each time, a phenomenon called neuronal noise. The same is true for rhesus macaques, which have a visual system very similar to that of humans. This variability often limits our ability to see a dim object or hear a faint sound. On the other hand, we benefit from variable responses as they are considered an essential part of the exploration stage of learning and for generating unpredictability during competitive interactions.

Despite this importance, brain variability is poorly understood. Krishna of the DPZ and his colleagues Annegret Falkner and Michael Goldberg at Columbia University in New York examined the responses of neurons in the monkey brain's lateral intraparietal area (LIP) while the monkey planned eye movements to spots of light at different locations on a computer screen. LIP is an area in the brain that is crucial for visual attention and for actively exploring visual scenes.  To measure the activity of single LIP neurons, the scientists inserted electrodes thinner than a human hair into the monkey's brain and recorded the neurons' electrical activity. Because the brain is not pain-sensitive, this insertion of electrodes is painless for the animal.

The image shows a so-called LIP valley.

Krishna and his colleagues could show how the activity of LIP neurons becomes less variable when the macaque performs a task and plans an eye movement. The reduction in variability was particularly strong where the monkey was planning to look and when the monkey was highly motivated to perform the task. This creation of a valley of reduced variability centered on relevant and interesting aspects of a visual scene may help the brain to filter the most important aspects from the sensory information delivered by the eye. The scientists developed a simple mathematical model that captures the patterns in the data and may also be a useful framework for the analysis of other brain areas.

"Our study represents one of the most detailed descriptions of neuronal variability in the brain. It offers important insights into fascinating brain functions as diverse as the focusing of visual attention and the control of eye movements during active viewing of visual scenes. The 's valley of variability that we discovered may help humans and animals to interact with their complex environment," says Krishna.

Explore further: Neuronal activity in the visual cortex controlled by both where the eyes are looking and what they see

More information: Annegret L. Falkner, Michael E. Goldberg and B. Suresh Krishna: Spatial Representation and Cognitive Modulation of Response Variability in the Lateral Intraparietal Area Priority Map. The Journal of Neuroscience, 9 October 2013, 33(41): 16117-16130; DOI: 10.1523/JNEUROSCI.5269-12.2013

Related Stories

Neuronal activity in the visual cortex controlled by both where the eyes are looking and what they see

September 20, 2013
Even though our eyes are constantly moving, the brain perceives the external world as stationary—a feat achieved by integrating images acquired by the retina with information about the direction of the gaze. An international ...

One region, two functions: Brain cells' multitasking key to understanding overall brain function

March 6, 2013
A region of the brain known to play a key role in visual and spatial processing has a parallel function: sorting visual information into categories, according to a new study by researchers at the University of Chicago.

Why we look at the puppet, not the ventriloquist

August 30, 2013
(Medical Xpress)—As ventriloquists have long known, your eyes can sometimes tell your brain where a sound is coming from more convincingly than your ears can.

When neurons have less to say, they speak up

October 16, 2013
The brain is an extremely adaptable organ – but it is also quite conservative. That's in short, what scientists from the Max Planck Institute of Neurobiology in Martinsried and their colleagues from the Friedrich Miescher ...

Has evolution given humans unique brain structures?

February 22, 2013
Humans have at least two functional networks in their cerebral cortex not found in rhesus monkeys. This means that new brain networks were likely added in the course of evolution from primate ancestor to human. These findings, ...

Researchers explore how prior knowledge influences our visual senses

November 1, 2013
(Medical Xpress)—The perception and processing of color has fascinated neuroscientists for a long time, as our brain influences our perception of it to such a degree that colors could be called an illusion. One mystery ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.