When neurons have less to say, they speak up

October 16, 2013
Even when neurons in the visual cortex are cut off from their main source of information, within 48 hours their activity returns to a level similar to that prior to the disruption. Under the microscope the currently active cells light up thanks to the addition of a calcium indicator. Credit: Credit: MPI of Neurobiology/Hübener

The brain is an extremely adaptable organ – but it is also quite conservative. That's in short, what scientists from the Max Planck Institute of Neurobiology in Martinsried and their colleagues from the Friedrich Miescher Institute in Basel and the Ruhr-Universität Bochum were now able to show. The researchers found that neurons in the brain regulate their own activity in such a way that the overall activity level in the network remains as constant as possible. This remains true even in the event of major changes: After the complete loss of information from a sensory organ, for example, the almost silenced neurons re-establish levels of activity similar to their previous ones after only 48 hours. The mean activity level thus achieved is a basic prerequisite for a healthy brain and the formation of new connections between neurons – an essential capacity for regeneration following injury to the brain or a sensory organ, for example.

Neurons communicate using electrical signals. They transmit these signals to neighbouring via special contact points known as . When new information needs processing, the nerve cells can develop new synaptic contacts with their neighbouring cells or strengthen existing synapses. To be able to forget, these processes can also be reversed. The brain is consequently in a constant state of reorganisation, yet need to be prevented from becoming either too active or too inactive. The aim is to keep the level of activity constant, as the long-term overexcitement of neurons can result in damage to the brain.

Too little activity is not good either. "The cells can only re-establish connections with their neighbours when they are 'awake', so to speak, that is when they display a minimum level of activity", explains Mark Hübener, head of the recently published study. The international team of researchers succeeded in demonstrating for the first time that the brain is able to compensate even massive changes in within a period of two days, and can return to an activity level similar to that before the change.

Up to now, only cell cultures gave an indication of this astonishing ability of the brain. It was also unclear as to how neurons could control their own activity in relation to the activity of the entire network. Now, the scientists have made significant progress towards finding an answer to this question. In their study, they examined the of mice that recently went blind. As expected, but never previously demonstrated, the activity of the neurons in this area of the brain did not fall to zero but to half of the original value. "That alone was an amazing finding, as it shows the extent to which the visual cortex also processes information from other areas of the brain," explains Tobias Bonhoeffer, who investigates processes in the visual cortex with his department at the Max Planck Institute of Neurobiology for many years. "However, things became really exciting when we continued to observe the area over the following hours and days."

The scientists were able to witness "live" through the microscope how the neurons in the visual cortex became active again. After just a few hours, they could clearly observe how the contact points between the affected neurons and their neighbouring cells increased in size. When synapses get bigger, they also become stronger and signals are transmitted faster and more effectively. As a result of this synaptic upscaling, the activity of the affected network returned to its starting value after a period of between 24 and 48 hours. "To put it simply, due to the absence of visual input, the cells had less to say – but when they did say something, they said it with particular emphasis," explains Mark Hübener.

Due to the simultaneous strengthening of all of the synapses of the affected , major reductions in the neuronal activity can be normalised again with surprising speed. The relatively stable activity level thereby achieved is an essential prerequisite for maintaining a healthy, adaptable .

Explore further: Neuronal activity in the visual cortex controlled by both where the eyes are looking and what they see

More information: Tara Keck, Georg B. Keller, R. Irene Jacobsen, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener, Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo, Neuron, 16 October 2013

Related Stories

Neuronal activity in the visual cortex controlled by both where the eyes are looking and what they see

September 20, 2013
Even though our eyes are constantly moving, the brain perceives the external world as stationary—a feat achieved by integrating images acquired by the retina with information about the direction of the gaze. An international ...

New theory of synapse formation in the brain

October 10, 2013
The human brain keeps changing throughout a person's lifetime. New connections are continually created while synapses that are no longer in use degenerate. To date, little is known about the mechanisms behind these processes. ...

Newly found 'volume control' in the brain promotes learning, memory

January 9, 2013
Scientists have long wondered how nerve cell activity in the brain's hippocampus, the epicenter for learning and memory, is controlled—too much synaptic communication between neurons can trigger a seizure, and too little ...

Cellular environment controls formation and activity of neuronal connections

May 6, 2013
Environment moulds behaviour - and not just that of people in society, but also at the microscopic level. This is because, for their function, neurons are dependent on the cell environment, the so-termed extracellular matrix. ...

'Brain waves' challenge area-specific view of brain activity

March 20, 2013
Our understanding of brain activity has traditionally been linked to brain areas – when we speak, the speech area of the brain is active. New research by an international team of psychologists led by David Alexander and ...

First to measure the concerted activity of a neuronal circuit

August 22, 2013
Neurobiologists from the Friedrich Miescher Institute for Biomedical Research have been the first to measure the concerted activity of a neuronal circuit in the retina as it extracts information about a moving object. With ...

Recommended for you

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

beleg
not rated yet Oct 19, 2013
You can inhibit and suppress brain specific auditory processing and storage and restore the processes and storage by regulating the brain specific estrogen in humans or birds.:
http://phys.org/n...483.html

Assuming a similar molecular basis for visual processing and storage what substance is that?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.