Cellular suicide switch discovered

December 4, 2013, Agency for Science, Technology and Research (A*STAR), Singapore
Cell biology: Taking advantage of defects in splicing
Relative to a normal brain (top), the brains of mice lacking the Prmt5 gene are underdeveloped and lack key structural components (bottom). Credit: M. Bezzi, et al.

A newly discovered early-warning system triggers cellular suicide when a critical RNA editing system breaks down.

The initial RNA transcript generated from a given gene is only a first draft that must be heavily edited before it is translated. This process entails splicing together segments of the RNA—known as 'exons'—that actually encode a protein product, while removing the noncoding 'intron' sequences that lie between the exons. Improper splicing results in proteins that are defective or entirely nonfunctional. Now, research from Ernesto Guccione's team at the A*STAR Institute of Molecular and Cell Biology in Singapore has uncovered a splicing 'quality-control system' that could also offer a mechanism for fighting cancer.

Guccione and co-workers began by studying the function of protein arginine methyltransferase 5 (PRMT5), an enzyme that introduces chemical modifications onto other proteins. Because PRMT5 is known to act within the brain, the researchers generated transgenic mice that no longer produced this protein in their . These animals died within weeks of birth, with profound neurological defects and apparent disruption of brain development.

Careful examination of cultured neuronal precursor cells showed that the absence of PRMT5 triggered a cellular 'self-destruct' mechanism known as . This process was mediated in part by p53, a protein that acts as a critical safeguard against cancer by triggering apoptosis in cells on the verge of .

Several components of the cellular splicing machinery are among PRMT5's targets. Guccione and co-workers determined that the increased apoptosis observed in the absence of PRMT5 was a direct result of splicing defects. Without the chemical modifications introduced by PRMT5, the splicing proteins failed to assemble properly. The researchers identified hundreds of genes from PRMT5-deficient cells in which introns had been retained or exons had been inappropriately eliminated.

Among the affected proteins was MDM4, a protein that inhibits p53, thus preventing apoptosis and facilitating tumor formation. In the absence of PRMT5, the RNA encoding MDM4 loses an exon, yielding a truncated and unstable product that is no longer able to block p53-mediated apoptosis.

This vulnerability to mis-splicing turns Mdm4 into an important quality-control system. "We have identified a 'sensing mechanism' that directly links defects in the splicing machinery to activation of the p53 pathway," says Guccione. This mechanism is also present in human cells. His group sees great potential in deliberately tripping the MDM4 sensor system as a means to selectively kill cancer cells. "We have already obtained very promising initial results both in cell lines and in mouse models," he says.

Explore further: New mechanism in the regulation of human genes

More information: Bezzi, M., Teo, S. X., Muller, J., Mok, W. C., Sahu, S. K. et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes & Development 27, 1903–1916 (2013).

Related Stories

New mechanism in the regulation of human genes

July 14, 2011
Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.