Fetal alcohol syndrome heart defects may be caused by altered function, not structure

December 30, 2013

Recent data shows that more than 500,000 women in the U.S. report drinking during pregnancy, with about 20 percent of this population admitting to binge drinking. Even one episode of heavy drinking can lead to the collection of birth defects known as fetal alcohol syndrome (FAS). Along with growth retardation, head and face abnormalities, and neurological problems, FAS also causes heart problems in just over half of those with this condition. Though much research has focused on looking for the cause of these alcohol-induced heart defects, they remain largely a mystery.

To investigate this question, Ganga Karunamuni of Case Western University and her colleagues studied heart formation in quail embryos, whose heart development is very similar to that of humans. The researchers used an innovative imaging technique, optical coherence tomography, to compare embryos exposed to a single, large dose of to those who hadn't received alcohol. They looked both at how alcohol changed the function of the developing hearts as well as their structure. They found that significant changes in heart function appeared to come well before changes in structure that are hallmarks of the well-known FAS heart anomalies. These changes in function, the study authors suggest, might be the cause of the structural problems that arise later by exerting forces on the heart that change its development.

The article is entitled "Ethanol Exposure Alters Early Cardiac Function in the Looping Heart: A Mechanism for Congenital Heart Defects?" It appears in the Articles in Press section of the American Journal of Physiology – Heart and Circulatory Physiology, published by the American Physiological Society.

Methodology

The researchers studied three sets of quail embryos. In one set of these embryos, the researchers injected a quantity of alcohol into their shells proportional to the amount that would be considered a single episode of binge drinking in a pregnant woman. They purposely chose a time during early development in which embryos are especially vulnerable to the effects of alcohol. In another set of embryos, the researchers injected their shells with saline, a placebo not known to have any harmful effects. The researchers left a third set of embryos to develop without any interventions.

Using an imaging modality called optical coherence tomography, which gives the ability to peer through layers of tissue, the researchers kept an eye on the developing hearts at a particular stage when the primitive heart switches from a tube shape to a loop-shaped circuit. The researchers compared both heart blood flow and anatomy at this stage between the three different sets of embryos. They also compared heart anatomy between the different sets both at this looping stage and at a stage closer to hatching.

Results

As expected, the researchers found that the hearts of embryos exposed to alcohol had dramatic defects close to hatching, including thinner walls separating the heart's four chambers and damaged valves. Long before these defects formed, the researchers saw significant differences in heart blood flow between that weren't exposed to alcohol and those that were. In those whose shells weren't injected with alcohol, a small portion of the blood flowed backward through the heart circuit after each beat. In those exposed to alcohol, a much larger portion of blood flowed backward in the circuit. These malfunctioning hearts had smaller "cardiac cushions"—collections of cells that later become chamber walls and valves—compared to unexposed hearts.

Importance of the Findings

The authors suggest that this improper function may itself steer developing hearts in the wrong direction during development, setting the stage for larger defects to arise. Previous studies have shown that because cells in the heart and elsewhere are responsive to mechanical forces, those forces exerted by blood flow can affect . By learning more about these functional changes in the early , the suggest that it may eventually be possible to redirect to a more healthful pattern, thereby rescuing FAS hearts before they form defects.

"With an average of 4 million U.S. pregnancies per year, there will be approximately 10,000 cases of alcohol-induced ," the study authors write. "Continued study of the mechanisms involved in the development of alcohol-induced cardiac is warranted in order to implement effective treatments and/or prevention strategies."

Explore further: Environmental toxins linked to heart defects

More information: ajpheart.physiology.org/conten … /ajpheart.00600.2013

Related Stories

Environmental toxins linked to heart defects

November 17, 2013
Children's congenital heart defects may be associated with their mothers' exposure to specific mixtures of environmental toxins during pregnancy, according to research presented at the American Heart Association's Scientific ...

Congenital heart defects could have their origin during very early pregnancy

December 13, 2012
The origins of congenital heart defects could be traced right back to the first stages of embryonic development, according to University of East Anglia (UEA) research.

Finding triggers of birth defects in an embryo heart

October 30, 2012
Researchers at Case Western Reserve University have found a way to create three-dimensional maps of the stress that circulating blood places on the developing heart in an animal model – a key to understanding triggers of ...

Recommended for you

Researchers investigate the potential of spider silk protein for engineering artificial heart

August 18, 2017
Ever more people are suffering from cardiac insufficiency, despite significant advances in preventing and minimising damage to the heart. The main cause of reduced cardiac functionality lies in the irreversible loss of cardiac ...

Lasers used to detect risk of heart attack and stroke

August 18, 2017
Patients at risk of heart attacks and strokes may be spotted earlier thanks to a diagnosis tool that uses near-infrared light to identify high-risk arterial plaques, according to research carried out at WMG, University of ...

How Gata4 helps mend a broken heart

August 15, 2017
During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts ...

Injectable tissue patch could help repair damaged organs

August 14, 2017
A team of U of T Engineering researchers is mending broken hearts with an expanding tissue bandage a little smaller than a postage stamp.

'Fat but fit' are at increased risk of heart disease

August 14, 2017
Carrying extra weight could raise your risk of heart attack by more than a quarter, even if you are otherwise healthy.

Air pollution linked to cardiovascular disease; air purifiers may lessen impact

August 14, 2017
Exposure to high levels of air pollution increased stress hormone levels and negative metabolic changes in otherwise healthy, young adults in a recent study conducted in China. Air purifiers appeared to lessen the negative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.