From friend to foe: How benign bacteria evolve to virulent pathogens

December 12, 2013
Macrophage (in red) infected with fluorescent labelled E. coli (in yellow or blue). Credit: Gordo lab, Instituto Gulbenkian de Ciência

Bacteria can evolve rapidly to adapt to environmental change. When the "environment" is the immune response of an infected host, this evolution can turn harmless bacteria into life-threatening pathogens. A study published on December 12 in PLOS Pathogens provides insight into how this happens.

Isabel Gordo and colleagues from the Instituto Gulbenkian de Ciencia in Oeira, Portugal, have for the first time devised an experimental system to observe and study the evolution of in response to encounters with cells of the mammalian . They found that in less than 500 bacterial generations (or 30 days), the bacteria became more resistant to being killed by immune cells and acquired the ability to cause disease in mice.

"Escherichia coli bacteria show an extraordinary amount of diversity: Many are benign commensal bacteria, but some are deadly pathogens", says Isabel Gordo. "It is thought that many strains of E. coli that cause disease in humans evolved from commensal strains. We thought that experimental evolution would be a powerful tool to directly observe some of the steps E. coli may take in the transition from commensalism to pathogenesis."

For their study, the scientists studied initially benign E. coli bacteria that were continuously confronted with macrophages, which are part of our immune system and can swallow and digest bacteria. They grew a mix of bacteria and macrophages in a liquid culture (a glass bottle that contains a nutritious broth). Once a day, they diluted the mix, and every other day they took a sample of the bacteria for further analysis. As a control, they grew, diluted, and analyzed bacteria from the same ancestral strain but grown without macrophages.

From day four on, bacteria that had been exposed to macrophages started to show changes in their phenotype (their appearance), whereas such changes were never observed in the controls. The selective pressure imposed by the presence of the macrophages prompted changes in the bacteria that were consistently observed in six independent experimental series. The changes affected the phenotype of the bacteria (with new variants forming either "small colonies" or "mucoid colonies"), their fitness, and their genetic make-up.

When the scientists looked at the interaction between new variant bacteria and macrophages more closely, they found that the small colony variants were more resistant to being digested by macrophages than the ancestral strain, and the mucoid variant was less likely to be gobbled up. When they infected mice with mucoid variant bacteria, they also found that the variants have increased ability to cause disease in mice.

"We demonstrate", the scientists say, "that E. coli can adapt to better resist within a few hundred generations, and that clones with morphologies and traits similar to those of rapidly emerge".

Explore further: Staphylococcus aureus bacteria turns immune system against itself

More information: Miskinyte M, Sousa A, Ramiro RS, de Sousa JAM, Kotlinowski J, et al. (2013) The Genetic Basis of Escherichia coli Pathoadaptation to Macrophages. PLoS Pathog 9(12): e1003802. DOI: 10.1371/journal.ppat.1003802

Related Stories

Staphylococcus aureus bacteria turns immune system against itself

November 19, 2013
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, a leading cause of skin infections and one of the major sources of hospital-acquired infections, including the antibiotic-resistant ...

Anti-tumor activity of immune cells can be restored

December 10, 2013
The Leuven-based VIB researchers have revealed a mechanism that explains why the anti-tumor activity of specific immune cells called macrophages is suppressed during tumor growth. They have also demonstrated that blocking ...

How drug-resistant staph paralyzes immune cells

November 25, 2013
When golden staph enters our skin it can identify the key immune cells and 'nuke' our body's immune response.

How bacteria respond so quickly to external changes

December 2, 2013
Understanding how bacteria adapt so quickly to changes in their external environment with continued high growth rates is one of the major research challenges in molecular microbiology. This is important not least for our ...

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.