From friend to foe: How benign bacteria evolve to virulent pathogens

December 12, 2013, Public Library of Science
Macrophage (in red) infected with fluorescent labelled E. coli (in yellow or blue). Credit: Gordo lab, Instituto Gulbenkian de Ciência

Bacteria can evolve rapidly to adapt to environmental change. When the "environment" is the immune response of an infected host, this evolution can turn harmless bacteria into life-threatening pathogens. A study published on December 12 in PLOS Pathogens provides insight into how this happens.

Isabel Gordo and colleagues from the Instituto Gulbenkian de Ciencia in Oeira, Portugal, have for the first time devised an experimental system to observe and study the evolution of in response to encounters with cells of the mammalian . They found that in less than 500 bacterial generations (or 30 days), the bacteria became more resistant to being killed by immune cells and acquired the ability to cause disease in mice.

"Escherichia coli bacteria show an extraordinary amount of diversity: Many are benign commensal bacteria, but some are deadly pathogens", says Isabel Gordo. "It is thought that many strains of E. coli that cause disease in humans evolved from commensal strains. We thought that experimental evolution would be a powerful tool to directly observe some of the steps E. coli may take in the transition from commensalism to pathogenesis."

For their study, the scientists studied initially benign E. coli bacteria that were continuously confronted with macrophages, which are part of our immune system and can swallow and digest bacteria. They grew a mix of bacteria and macrophages in a liquid culture (a glass bottle that contains a nutritious broth). Once a day, they diluted the mix, and every other day they took a sample of the bacteria for further analysis. As a control, they grew, diluted, and analyzed bacteria from the same ancestral strain but grown without macrophages.

From day four on, bacteria that had been exposed to macrophages started to show changes in their phenotype (their appearance), whereas such changes were never observed in the controls. The selective pressure imposed by the presence of the macrophages prompted changes in the bacteria that were consistently observed in six independent experimental series. The changes affected the phenotype of the bacteria (with new variants forming either "small colonies" or "mucoid colonies"), their fitness, and their genetic make-up.

When the scientists looked at the interaction between new variant bacteria and macrophages more closely, they found that the small colony variants were more resistant to being digested by macrophages than the ancestral strain, and the mucoid variant was less likely to be gobbled up. When they infected mice with mucoid variant bacteria, they also found that the variants have increased ability to cause disease in mice.

"We demonstrate", the scientists say, "that E. coli can adapt to better resist within a few hundred generations, and that clones with morphologies and traits similar to those of rapidly emerge".

Explore further: Staphylococcus aureus bacteria turns immune system against itself

More information: Miskinyte M, Sousa A, Ramiro RS, de Sousa JAM, Kotlinowski J, et al. (2013) The Genetic Basis of Escherichia coli Pathoadaptation to Macrophages. PLoS Pathog 9(12): e1003802. DOI: 10.1371/journal.ppat.1003802

Related Stories

Staphylococcus aureus bacteria turns immune system against itself

November 19, 2013
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, a leading cause of skin infections and one of the major sources of hospital-acquired infections, including the antibiotic-resistant ...

Anti-tumor activity of immune cells can be restored

December 10, 2013
The Leuven-based VIB researchers have revealed a mechanism that explains why the anti-tumor activity of specific immune cells called macrophages is suppressed during tumor growth. They have also demonstrated that blocking ...

How drug-resistant staph paralyzes immune cells

November 25, 2013
When golden staph enters our skin it can identify the key immune cells and 'nuke' our body's immune response.

How bacteria respond so quickly to external changes

December 2, 2013
Understanding how bacteria adapt so quickly to changes in their external environment with continued high growth rates is one of the major research challenges in molecular microbiology. This is important not least for our ...

Recommended for you

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

New study validates clotting risk factors in chronic kidney disease

January 17, 2018
In late 2017, researchers from Boston University School of Medicine (BUSM) discovered and published (Science Translational Medicine, (9) 417, Nov 2017) a potential treatment target to prevent chronic kidney disease (CKD) ...

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.