Anti-tumor activity of immune cells can be restored

December 10, 2013, VIB (the Flanders Institute for Biotechnology)

The Leuven-based VIB researchers have revealed a mechanism that explains why the anti-tumor activity of specific immune cells called macrophages is suppressed during tumor growth. They have also demonstrated that blocking the protein Nrp1 can restore this anti-tumor immune response. This is a first. Nrp1 may provide an important hub for the development of new therapies against cancer.

Max Mazzone: "For many years the biological processes which lead to the coordinated navigation of and nerves have been studied. The first observations come, in fact, from the Belgian anatomist Andreas Vesalius. So we were surprised to discover that immune cells follow the same

signals of blood vessels and nerves to position themselves within the cell and, in doing so, contribute to . By blocking these signals, we can once again turn the against the tumor."

Macrophages and cancer

Macrophages are important cells within the immune system. Among other things, they are responsible for cleaning up pathogens, such as bacteria and viruses. Macrophages, however, also appear to play an important and complex role in the occurrence and metastatization of cancer.

Macrophages that migrate to the tumor are called tumor-associated or TAMs for short. Extensive infiltration of TAMs into the tumor is often correlated with a poor prognosis in various cancers. These TAMs suppress the immune system and stimulate blood vessel formation thereby stimulating the growth of the tumor. On the other hand, there are also studies that show just the opposite effect, reaching the conclusion that TAMs have an anti-tumor effect.

The opposing functions of TAMs in the development of tumors arise the question whether there are specific factors within the micro-environment of the tumor which dictate the phenotype of these TAMs.

Neuropilin-1 (Nrp1)

Andrea Casazza and his colleagues, under the direction of Massimiliano Mazzone, studied the mechanism that is responsible for the opposing phenotypes of TAMs. Their study showed that the protein neuropilin-1 (Nrp1) is crucial for the localization of TAMs inside hypoxic tumor regions, which strengthens the pro-tumoral characteristics of TAMs.

Consequently, they discovered that by blocking Nrp1, macrophages were no longer able to migrate inside hypoxic regions in the tumor. It is in this way that the anti-tumoral activity of the macrophages is restored. Less suppression of the immune response and less in the tumor leads to less tumor growth.

Impact of this research

This pre-clinical study from Professor Mazzone and his colleagues reveals a new molecular axis that may offer interesting therapeutic opportunities for the treatment of pancreatic cancer, breast cancer and lung cancer, among others. The goal of a therapy like this is to restore the anti-tumor phenotype of

macrophages. After all, macrophages are cells that are normally part of our immune systems.

Furthermore, these results also have an important prognostic value—the positioning of macrophages in hypoxic tumor regions would be an indication of a poor prognosis, while the localization of macrophages in normoxic regions of the tumor could predict a better disease outcome.

Explore further: Depletion of 'traitor' immune cells slows cancer growth in mice

More information: This research appears in the journal Cancer Cell: Casazza et al., Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores anti-tumor immunity).

Related Stories

Depletion of 'traitor' immune cells slows cancer growth in mice

September 16, 2013
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably. Most cancer drugs try to treat the disease by killing those fast-growing cells, but another approach called immunotherapy ...

Key driver of metastasis identified

October 31, 2011
Scientists at Dalhousie University in Nova Scotia have identified a key mechanism of metastasis that could lead to blocking tumor growth if their findings are confirmed.

Using CD47's protection to deliver anti-cancer drugs directly to tumor cells

October 9, 2012
(Medical Xpress)—For most of their natural lives, red blood cells hide safely under the radar of the body's immune system, thanks to a cloak of "don't eat me" protein called CD47. Ching-An Peng of Michigan Technological ...

Recommended for you

Daily low-dose aspirin may be weapon against ovarian cancer

July 20, 2018
(HealthDay)— One low-dose aspirin a day could help women avoid ovarian cancer or boost their survival should it develop, two new studies suggest.

Discovery of kidney cancer driver could lead to new treatment strategy

July 19, 2018
University of North Carolina Lineberger Comprehensive Cancer Center scientists have uncovered a potential therapeutic target for kidney cancers that have a common genetic change. Scientists have known this genetic change ...

High fruit and vegetable consumption may reduce risk of breast cancer, especially aggressive tumors

July 19, 2018
Women who eat a high amount of fruits and vegetables each day may have a lower risk of breast cancer, especially of aggressive tumors, than those who eat fewer fruits and vegetables, according to a new study led by researchers ...

Sunscreen reduces melanoma risk by 40 per cent in young people

July 19, 2018
A world-first study led by University of Sydney has found that Australians aged 18-40 years who were regular users of sunscreen in childhood reduced their risk of developing melanoma by 40 percent, compared to those who rarely ...

Analysis of prostate tumors reveals clues to cancer's aggressiveness

July 19, 2018
Using genetic sequencing, scientists have revealed the complete DNA makeup of more than 100 aggressive prostate tumors, pinpointing important genetic errors these deadly tumors have in common. The study lays the foundation ...

Complementary medicine for cancer can decrease survival

July 19, 2018
People who received complementary therapy for curable cancers were more likely to refuse at least one component of their conventional cancer treatment, and were more likely to die as a result, according to researchers from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.