Gene CUX1 discovered to play part in one per cent of all cancers

December 8, 2013, Wellcome Trust Sanger Institute

Researchers have identified a gene that drives the development of tumours in over one per cent of all cancer patients. This is the first time that the gene CUX1 has been broadly linked to cancer development.

The team discovered that, when CUX1 is deactivated, a is activated that increases . Drugs that inhibit the biological pathway are currently being used in the clinic and are in development thus highlighting a potential new targeted therapy for patients with this type of -causing mutation.

Around 300,000 people in the UK each year are diagnosed with cancer, and for more than 3,000 of these patients, an inactive CUX1 gene may be an underlying factor for their disease.

"Our research is a prime example of how understanding the genetic code of cancers can drive the search for targeted cancer therapies that work more effectively and efficiently, says Dr David Adams, lead author from the Wellcome Trust Sanger Institute. "This could improve the lives of thousands of people suffering from cancer."

The team used genetic data from over 7,600 , collected and sequenced by the International Cancer Genome Constortium (ICGC) and other groups. They found that in around one per cent of the cancer genomes studied, mutations deactivated CUX1, an event associated with tumour growth.

CUX1 is mutated at a relatively low frequency, but across many different types of cancer. Because previous studies focused on genes that are mutated at a high rate in one cancer type to find cancer drivers, CUX1 was missed as a driver of cancer.

"Our work harnesses the power of combining large-scale cancer genomics with experimental genetics," says Dr Chi Wong, first author from the Wellcome Trust Sanger Institute and practising Haematologist at Addenbrooke's Hospital. "CUX1 defects are particularly common in myeloid blood cancers, either through mutation or acquired loss of chromosome 7q. As these patients have a dismal prognosis currently, novel targeted therapies are urgently needed."

"Data collected from large consortia such the ICGC, provides us with a new and broader way to identify genes that can underlie the development of cancers," says Professor David Tuveson from Cold Spring Harbor Laboratory. "We can now look at cancers as groups of diseases according to their tissues of origin and collectively examine and compare their genomes."

The team silenced CUX1 in cultured cells to understand how inactivating it might lead to the development of tumours. They found that when CUX1 is deactivated, it had a knock-on effect on a biological inhibitor, PIK3IP1, reducing its inhibitory effects. This mobilises an enzyme responsible for cell growth, phosphoinositide 3-kinase (PI3K), increasing the rate of tumour progression.

The team has already identified several dozen other genes that when mutated at a low frequency could promote cancer development. They plan to silence these genes in mice to fully understand how their inactivation may lead to and the mechanisms by which this occurs.

"Drugs that inhibit PI3K signalling are currently undergoing clinical trial," says Professor Paul Workman, Deputy Chief Executive and Head of Cancer Therapeutics at The Institute of Cancer Research, London. "This discovery will help us to target these drugs to a new group of patients who will benefit from them and could have a dramatic effect on the lives of many cancer sufferers."

Explore further: Research in mice identifies new treatment options for bowel cancer

More information: Chi C. Wong, Inigo Martincorena3, Alistair G. Rust, Mamunur Rashid, Constantine Alifrangis, Ludmil B. Alexandrov, Jessamy C. Tiffen, Christina Kober, Chronic Myeloid, Disorders Working Group of the International Cancer Genome Consortium5, Anthony R. Green, Charles E. Massie, Jyoti Nangalia, Stella Lempidaki, Hartmut Döhner, Konstanze Döhner, Sarah J. Bray, Ultan McDermott, Elli Papaemmanuil, Peter J. Campbell & David J. Adams. (2013) 'Inactivating CUX1 mutations promote tumorigenesis' Advanced online publication in Nature Genetics 08 Dec 2013. DOI: 10.1038/ng.2846

Related Stories

Research in mice identifies new treatment options for bowel cancer

July 8, 2013
Researchers have discovered the genetic processes that cause specific types of bowel cancer. Using this knowledge, they identified cancer drugs that target these genes. Their findings offer the opportunity to develop personalised ...

Changes to cartilage linked to bone cancer offers a possible new diagnostic approach

June 17, 2013
(Medical Xpress)—For the first time, researchers from The Wellcome Trust Sanger Institute, the Royal National Orthopaedic Hospital and UCL Cancer Institute, have linked a gene central to the production of cartilage, COL2A1, ...

Scientists fingerprint single cancer cells to map cancer's family tree

November 18, 2013
A new method to take the DNA fingerprint of individual cancer cells is uncovering the true extent of cancer's genetic diversity, new research reveals.

Researchers discover genetic imprints and signatures left by DNA-damaging processes that lead to cancer

August 14, 2013
Researchers have provided the first comprehensive compendium of mutational processes that drive tumour development. Together, these mutational processes explain most mutations found in 30 of the most common cancer types. ...

Novel mutations define two types of bone tumor

October 27, 2013
Scientists have made a rare discovery that allows them to attribute two types of tumour almost entirely to specific mutations that lie in two related genes.

Potential brain tumour drug can distinguish cancer cells from healthy ones

October 31, 2013
A potential new drug, already in clinical development, can stop brain tumour cells growing while leaving healthy cells alone, according to new research published today (Wednesday) in PLOS ONE.

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.