Changes in gene explain more of inherited risk for rare disease

December 24, 2013 by Greg Williams
Changes in gene explain more of inherited risk for rare disease

(Medical Xpress)—Changes to a gene called LZTR1 predispose people to develop a rare disorder where multiple tumors called schwannomas form near nerve pathways, according to a study published today in the journal Nature Genetics and led by researchers from the University of Alabama at Birmingham.

The formation of multiple schwannomas is one sign that a person has the genetic disorder called schwannomatosis, which is one of the three major forms of neurofibromatosis, besides neurofibromatosis types 1 and 2. The condition is so named because the tumors originate in Schwann cells that form a nerve sheath and insulate nerve pathways to cause severe, in many patients.

To date, physicians cannot give most patients a confirmed diagnosis for schwannomatosis, even if they show symptoms, because changes in genes linked to the condition by past studies explain only about 50 percent of familial and less than 10 percent of sporadic cases.

Work in 2007 determined that inheritable mutations in SMARCB1 predisposed to schwannomatosis. In addition, the schwannomas showed a loss of the long arm of chromosome 22, and different mutations in the neurofibromatosis type 2 (NF2) gene were found in each tumor studied.

Despite these many known details, much of the risk for schwannomatosis remained unexplained going into the current study. Several research groups had proposed that other schwannomatosis-predisposing genes existed, but no one had found any.

Specializing in genetic studies for all forms of the neurofibromatoses, the UAB Medical Genomics Laboratory chose to focus its research on a subset of schwannomatosis samples that did not harbor SMARCB1 mutations, which framed their experiments such that the role of LZTR1 was revealed.

"We have been working urgently to identify the genetic mechanisms behind these diseases because doing so is central to efforts to understand schwannoma tumor development as well as to identify new drug treatments," said Ludwine Messiaen, Ph.D., director of the Medical Genomics Laboratory, professor in the Division of Clinical Genetics in the Department of Genetics within the UAB School of Medicine and corresponding study author. "This is pertinent as only some of the schwannomas can be surgically removed without neurological consequences, and there is no widely accepted approach for treating the severe, chronic pain in these patients."

The study, conceived and coordinated by Arkadiusz Piotrowski of the University of Gdansk in Poland and Messiaen, resulted in the identification of LZTR1 on chromosome 22q as a novel tumor-suppressor gene predisposing to multiple schwannomas in patients without a mutation in SMARCB1. The results were seen in patients whose schwannomas also showed a loss of the long arm of chromosome 22 and a different somatic NF2 mutation in each tumor.

The team found that in all 25 schwannomas studied from 16 unrelated schwannomatosis patients, all tumors showing a loss of the long arm of chromosome 22 and a different somatic NF2 mutation in each tumor also had LZTR1 mutations present, strongly supporting the contribution to the disease by the combination of these factors.

The LZTR1 mutations were found using massive parallel sequencing (e.g. "next-generation sequencing") of highly evolutionary conserved sequences specifically on chromosome 22. LZTR1 mutations likely will be found in a high fraction of familial as well as sporadic schwannomatosis patients, whose predisposition is not caused by SMARCB1, says Messiaen. Indeed, LZTR1 mutations were found in 6/6 familial and 8/11 sporadic such patients.

Both causal genes, LZTR1 and SMARCB1, show a potential functional link to chromatin remodeling mechanisms, which play a crucial role in cell differentiation and adaptation to environmental stimuli. Further, LZTR1 and SMARCB1 are known to interact with histone deacetylase 4 or HDAC4, which is a target for , a new class of anti-tumor drugs. The present findings will encourage further studies aiming at potential treatment for schwannomatosis.

The results published today will have broader implications, as LZTR1 was recently shown, in an independent study, to contribute to tumor development in a subset of with glioblastoma multiforme, the most aggressive type of brain tumor.

"Recent independent studies have shown that SMARCB1 and LZTR1 interact with histone deacetylase 4, and histone deacetylase inhibitors are emerging as a new class of anti-tumor drugs," said Bruce Korf, M.D., Ph.D., chair of the UAB Department of Genetics, a study co-author and principal investigator for The Neurofibromatosis Clinical Trials Consortium at UAB. "One of these drugs, called AR-42, was recently reported to inhibit growth in schwannoma and meningioma cells. This creates the prospect of further testing of the drug as a potential treatment for schwannomatosis."

Explore further: REiNS collaboration seeks common outcome measures for neurofibromatosis clinical trials

Related Stories

REiNS collaboration seeks common outcome measures for neurofibromatosis clinical trials

December 9, 2013
As potentially effective new treatments for neurofibromatosis (NF) are developed, standardized research approaches—including outcome measures specific to NF—are needed. The first report from the Response Evaluation in ...

Study reveals genes that drive brain cancer

August 5, 2013
A team of researchers at the Herbert Irving Comprehensive Cancer Center at Columbia University Medical Center has identified 18 new genes responsible for driving glioblastoma multiforme, the most common—and most aggressive—form ...

Study brings greater understanding of tumor growth mechanism

May 16, 2013
A study led by researchers from Plymouth University Peninsula Schools of Medicine and Dentistry has for the first time revealed how the loss of a particular tumour suppressing protein leads to the abnormal growth of tumours ...

Gene sequencing project finds family of drugs with promise for treating childhood tumor

December 9, 2013
Drugs that enhance a process called oxidative stress were found to kill rhabdomyosarcoma tumor cells growing in the laboratory and possibly bolstered the effectiveness of chemotherapy against this aggressive tumor of muscle ...

Genetic landscape of common brain tumors holds key to personalized treatment

January 24, 2013
Nearly the entire genetic landscape of the most common form of brain tumor can be explained by abnormalities in just five genes, an international team of researchers led by Yale School of Medicine scientists report online ...

Recommended for you

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

Researchers uncover new congenital heart disease genes

October 9, 2017
Approximately one in every 100 babies is born with congenital heart disease (CHD), and CHD remains the leading cause of mortality from birth defects. Although advancements in surgery and care have improved rates of survival ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

LaPortaMA
not rated yet Dec 24, 2013
I missed it:
What changes the gene?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.