Vapor nanobubbles rapidly detect malaria through the skin

December 31, 2013 by B.j. Almond
Vapor nanobubbles rapidly detect malaria through the skin
This graphic shows how a laser pulse creates a vapor nanobubble in a malaria-infected cell and is used to noninvasively diagnose malaria rapidly and with high sensitivity. Credit: E. Lukianova-Hleb/Rice University

(Medical Xpress)—Rice University researchers have developed a noninvasive technology that accurately detects low levels of malaria infection through the skin in seconds with a laser scanner. The "vapor nanobubble" technology requires no dyes or diagnostic chemicals, and there is no need to draw blood.

A preclinical study published this week in the Proceedings of the National Academy of Sciences shows that Rice's technology detected even a single -infected cell among a million normal cells with zero false-positive readings.

The new diagnostic technology uses a low-powered laser that creates tiny vapor "nanobubbles" inside malaria-infected cells. The bursting bubbles have a unique acoustic signature that allows for an extremely sensitive diagnosis.

"Ours is the first through-the-skin method that's been shown to rapidly and accurately detect malaria in seconds without the use of blood sampling or reagents," said lead investigator Dmitri Lapotko, a Rice scientist who invented the vapor nanobubble technology. The diagnosis and screening will be supported by a low-cost, battery-powered portable device that can be operated by nonmedical personnel. One device should be able to screen up to 200,000 people per year, with the cost of diagnosis estimated to be below 50 cents, he said.

Malaria, one of the world's deadliest diseases, sickens more than 300 million people and kills more than 600,000 each year, most of them young children. Despite widespread global efforts, malaria parasites have become more resistant to drugs, and efficient epidemiological screening and early diagnosis are largely unavailable in the countries most affected by the disease.

Inexpensive rapid diagnostic tests exist, but they lack sensitivity and reliability. The gold standard for diagnosing malaria is a "blood smear" test, which requires a sample of the patient's blood, a trained laboratory technician, chemical reagents and high-quality microscope. These are often unavailable in low-resource hospitals and clinics in the developing world.

"The vapor nanobubble technology for malaria detection is distinct from all previous diagnostic approaches," said study co-author Dr. David Sullivan, a malaria clinician and researcher at Malaria Research Institute at Johns Hopkins University. "The vapor nanobubble transdermal detection method adds a new dimension to malaria diagnostics, and it has the potential to support rapid, high-throughput and highly sensitive diagnosis and screening by nonmedical personnel under field conditions."

The transdermal diagnostic method takes advantage of the optical properties and nanosize of hemozoin, a nanoparticle produced by a inside red blood cell. Hemozoin crystals are not found in normal .

Lapotko, a faculty fellow in biochemistry and cell biology and in physics and astronomy at Rice, and lead co-author Ekaterina Lukianova-Hleb found that hemozoin absorbs the energy from a short laser pulse and creates a transient vapor nanobubble. This short-lived vapor nanobubble emerges around the hemozoin nanoparticle and is detected both acoustically and optically. In the study, the researchers found that acoustic detection of nanobubbles made it possible to detect malaria with extraordinary sensitivity.

"The nanobubbles are generated on demand and only by hemozoin," said Lukianova-Hleb, a research scientist in biochemistry and cell biology at Rice. "For this reason, we found that our tests never returned a false-positive result, one in which malaria was mistakenly detected in a normal uninfected cell."

Explore further: Cross-species malaria immunity induced by chemically attenuated parasites

More information: "Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria," by Ekaterina Y. Lukianova-Hleb et al,.www.pnas.org/cgi/doi/10.1073/pnas.1316253111

Related Stories

Cross-species malaria immunity induced by chemically attenuated parasites

July 1, 2013
Malaria, a mosquito-born infectious disease, kills over 600,000 people every year. Research has focused on the development of a vaccine to prevent the disease; however, many malaria vaccines targeting parasite antigens have ...

Travelers push US malaria count highest in 40 yrs

October 31, 2013
U.S. malaria cases are at their highest level in four decades, mostly from Americans bringing home an unwelcome souvenir from their travels.

Holograms offer hope in fight against malaria, study suggests

November 5, 2013
Scientists have developed a 3D filming technique that could help inform research to stem the spread of malaria.

New method for diagnosing malaria

November 27, 2012
Danish researchers have developed a new and sensitive method that makes it possible to diagnose malaria from a single drop of blood or saliva. The method might eventually be used in low-resource areas without the need for ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.