FAK helps tumor cells enter the bloodstream

January 20, 2014
A study in The Journal of Cell Biology shows that FAK helps cancer cells metastasize. Here, FAK (green) gathers with another kinase protein called Src (red) at cell-to-cell junctions in blood vessel walls in the presence of the tumor-promoting growth factor VEGF. Credit: Jean et al., 2014

Cancer cells have something that every prisoner longs for—a master key that allows them to escape. A study in The Journal of Cell Biology describes how a protein that promotes tumor growth also enables cancer cells to use this key and metastasize.

Unless it can enter a blood or lymphatic vessel, a cancer cell is imprisoned in the tissue where it arises. The growth factor VEGF is the tumor cell's master key. It loosens connections between endothelial cells that form the lining of blood vessel walls, enabling the cancer cell to squeeze through, plunge into the bloodstream, and then spread to other tissues in a process called metastasis.

VEGF fosters this escape by triggering the phosphorylation of a protein called VEC, which helps fasten endothelial cells together. This alteration causes the complexes that contain VEC to fall apart, opening gaps between endothelial cells. Researchers haven't uncovered all of the steps leading to VEC phosphorylation, but one protein that might be involved is focal adhesion kinase (FAK), which accumulates at cell-to-cell junctions in the presence of VEGF.

To pinpoint the protein's function, researchers from the UC San Diego Moores Cancer Center gave a FAK inhibitor to a group of mice with fast-spreading breast cancer and a group with ovarian tumors. Previous work had shown that the inhibitor thwarts , and in both groups of mice the researchers found that it prevented phosphorylation of a specific amino acid—tyrosine 658—in VEC from tumor-associated blood vessels. The researchers then injected VEGF into control mice and into mice with an inactive variant of FAK in their endothelial cells. VEGF spurred phosphorylation of VEC's tyrosine 658 in the control rodents but not in the animals expressing inactive FAK, providing further evidence that FAK controls this event.

The researchers next tested whether FAK helps unlock endothelial layers. They determined the effect of VEGF-releasing on endothelial cell cultures. Tumor cells first adhered to the endothelial layer and then slipped through. When the endothelial cells produced an inactive form of FAK, the tumor cells were still able to stick to the layer but couldn't cross it. When the endothelial cell layers carried VEC mutants that could not be phosphorylated at tyrosine 658, tumor cells also had a hard time slipping through.

Normal breast tissue and invasive ductal carcinoma stained brown with antibodies to activated FAK. Blood vessels are indicated by BV. Credit: David Schlaepfer, UC San Diego.

The researchers also measured FAK's effect on metastasis in mice that had been injected with invasive tumor cells. Compared with control animals, mice that expressed inactive FAK in their showed fewer tumor cells in their lungs. Blocking endothelial FAK curbed metastasis without altering tumor growth, the team found.

The findings reveal a new role for endothelial FAK in the control of metastasis. The results place the protein in the pathway that controls vascular permeability and suggest that FAK helps VEGF-expressing open endothelial cell layers. FAK inhibitors are being tested in clinical trials because they restrain tumor growth, and this study suggests they may provide an additional benefit by curtailing metastasis.

Explore further: Tumors form advance teams to ready lungs for spread of cancer

More information: Jean, C., et al. 2014. J. Cell Biol. DOI: 10.1083/jcb.201307067

Related Stories

Tumors form advance teams to ready lungs for spread of cancer

August 15, 2013
Cancer metastasis requires tumor cells to acquire properties that allow them to escape from the primary tumor site, travel to a distant place in the body, and form secondary tumors. But first, an advance team of molecules ...

Partially blocking blood vessels' energy source may stop cancer growth, blindness, other conditions

December 12, 2013
Inhibiting the formation of new blood vessels is a common strategy for treating a range of conditions such as cancer, inflammatory diseases, and age-related macular degeneration. Unfortunately, drug inefficiency, resistance, ...

Genetic vulnerability of lung cancer to lay foundation for new drug options

April 4, 2013
Physician-researchers at UT Southwestern Medical Center have identified a vulnerability of certain lung-cancer cells – a specific genetic weakness that can be exploited for new therapies.

New role for Vascular Endothelial Growth Factor in regulating skin cancer stem cells

October 19, 2011
Skin squamous cell carcinomas are amongst the most frequent cancers in humans. Recent studies suggest that skin squamous cell carcinoma, like many other human cancers, contain particular cancer cells, known as cancer stem ...

Protein modified by researchers may reduce heart attack damage

March 1, 2012
Scientists modified a protein in the heart which dramatically reduced cell damage after heart attacks, according to new research published the American Heart Association journal Arteriosclerosis, Thrombosis and Vascular Biology.

Recommended for you

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.