No 'brakes': Study finds mechanism for increased activity of oncogene in certain cancers

January 6, 2014

The increased activation of a key oncogene in head and neck cancers could be the result of mutation and dysfunction of regulatory proteins that are supposed to keep the gene, which has the potential to cause cancer, in check, according to a new study led by researchers at the University of Pittsburgh School of Medicine. The findings, published in the early online version of the Proceedings of the National Academy of Sciences, suggest a new target for drugs to treat head and neck tumors, as well as other cancers.

Many research teams have found activation and increased signaling of a protein known as Signal Transducer and Activator of Transcription 3 (STAT3) in different kinds of cancers, and it is associated with poor prognosis, said senior author Jennifer Grandis, M.D., Distinguished Professor of Otolaryngology, Pitt School of Medicine, and director of the Head and Neck Program at the University of Pittsburgh Cancer Institute (UPCI), partner with UPMC CancerCenter. In adult tissues, STAT3 triggers the production of other proteins that promote the growth and survival of cancer cells.

"Until now, the question of why STAT3 could be hyperactivated has gone unanswered," Dr. Grandis said. "Our findings reveal a possible mechanism for this abnormal activity, which could help us develop new ."

Noting that gene aberrations in STAT3 itself rarely occurred in head and neck cancers, she and her colleagues looked for in other proteins associated with increased activity of STAT3. To be activated, STAT3 must be phosphorylated, meaning a phosphate group is added to it. Many cancer drugs work by inhibiting enzymes called kinases that encourage this process. The team focused instead on the other side of the biochemical seesaw in which enzymes called phosphatases deactivate proteins by removing phosphates.

To their surprise, they found head and neck tumors with elevated STAT3 were associated with mutations in the PTPR family of phosphatases. When they reproduced the mutations in computational and lab models, they saw that they led to dysfunction of the enzymes.

"Because the phosphatases don't work properly, phosphate groups don't get removed from STAT3 appropriately, and it stays activated," Dr. Grandis explained. "These mutations essentially get rid of the brakes that might otherwise slow or even stop development."

It might be possible one day to screen tumors for mutations in the PTPR group and then treat them with drugs that inhibit STAT3's activity, she added.

Explore further: Researchers say decoy shows promise as cancer-fighter in novel phase 0 trial

More information: Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer, www.pnas.org/cgi/doi/10.1073/pnas.1319551111

Related Stories

Researchers say decoy shows promise as cancer-fighter in novel phase 0 trial

August 13, 2012
(Medical Xpress) -- A critical protein that had been deemed “undruggable” can be effectively targeted by using a decoy to fool the body into a cancer-fighting response, according to researchers at the University ...

Researchers design small molecule to disrupt cancer-causing protein

March 26, 2013
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida have developed a small molecule that inhibits STAT3, a protein that causes cancer. This development could impact the treatment of several ...

Cancer: Unraveling a mechanism behind cellular proliferation

August 14, 2013
A hallmark of cancer is uncontrolled and sustained cell division. One particular overactive protein is implicated in this malfunction. EPFL scientists have discovered a complex mechanism that regulates this protein's activity ...

Combination drug therapy urged to battle lung cancer

February 2, 2012
Combination drug therapy may be needed to combat non-small cell lung cancer (NSCLC), according to a study by the Translational Genomics Research Institute (TGen) and Van Andel Research Institute (VARI).

Curcumin compound improves effectiveness of head and neck cancer treatment

May 19, 2011
A primary reason that head and neck cancer treatments fail is the tumor cells become resistant to chemotherapy drugs. Now, researchers at the University of Michigan Comprehensive Cancer Center have found that a compound derived ...

Unlocking a secret of stem cell stability

November 6, 2013
Proper embryonic development depends on a signaling pathway that helps to preserve stem cell "immaturity."

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.