"Molecular switch" discovered in Parkinson's protein

January 23, 2014, Kassel University

In one variant of Parkinson's disease, the enzyme LRRK2 plays a central role. Scientists at the University of Kassel have now discovered a mechanism that controls the activity of LRRK2. This opens up new approaches for the development of drugs to counter the disease, which until now is incurable.

 Following Alzheimer's, Parkinson's disease is the most frequently occurring neuro-degenerative illness. It is estimated that approximately 7 million people suffer from the disease worldwide. A portion of these cases have a hereditary basis and are caused by mutations in specific genes. These so-called familial Parkinson's variants occur with varying degrees of frequency in different ethnic groups; certain mutations are particularly widespread in Italy and Spain, for example. Mutations of a called LRRK2 are seen as the most frequent cause of inherited Parkinson's disease.

A research group with scientists from Kassel University has now discovered the "molecular switch" that controls the activity of this protein. "Our results can show ways to develop new drugs to regulate the activity of this protein and thus provide new approaches for the treatment of inherited Parkinson's disease," explains Prof. Dr. Friedrich W. Herberg, head of the Department of Biochemistry at Kassel University. "It may also be possible to derive approaches for the treatment of other variants of Parkinson's from these results."

The protein LRRK2 is also called "dardarin" from the Basque term "dardara" which means "to tremble". In human cells, the protein has a mediating function as it delivers phosphates to other proteins. Dardarin has a special and until now not fully clarified role in certain cells of the midbrain which produce the neurotransmitter dopamine. These cells in the midbrain die in persons suffering from Parkinson's. The resulting lack of dopamine leads to the well-known Parkinson's symptoms such as muscle tremors, depression or the loss of the sense of smell.

The Kassel researchers have investigated individual areas of the enzyme dardarin very closely. "Proteins are made up of smaller building blocks – amino acids. We were able to determine that in dardarin mutations, which are taken to be responsible for inherited Parkinson's, the phosphate supply is disturbed in an area around the amino acid 1441," explains Dipl. Biol. Kathrin Muda, one of the authors of a study that has now appeared in the journal Proceedings of the National Academy of Science. "In particular, we found that an additional protein called a 14-3-3 protein can bind in the area 1441 and thus have an effect on the activity of dardarin. In the mutated variants the binding at the dardarin enzyme is disturbed and the activity of dardarin is no longer correctly regulated." How this then results in the dying off of cells in the middle brain is not yet known. "If a way is found to substitute the binding with 14-3-3 through another mechanism that takes the place of the mutated dardarin variants, then we will have taken a big step in the development of anti-Parkinson's drugs," says Muda.

In cooperation with scientists from Tübingen University, from the Helmholtz Center Munich and the German Cancer Research Center Heidelberg, the Kassel researchers make use of so-called mass spectrometry, a process for the weighing of atoms and molecules. Through a comparison of the weight of normal and mutated LRRK2 protein particles, it was possible to draw conclusions about the phosphate supply process in the cells.

One of the focal points of the working group at Kassel University in their research is investigations of protein kinase A, one of the enzymes that is involved as a mediator in many processes in , as for instance with the phosphate supply of LRRK2. In addition to Herberg and Muda, the Kassel scientists Dr. Daniela Bertinetti and Dipl. Biol. Jennifer Sarah Hermann as well as Dr. Frank Gesellchen from Glasgow were also involved in the research efforts. The Biochemistry Department of Kassel University is part of a consortium for research of human proteins (www.affinomics.org). The study received support from the EU, the Otto Braun Fund and the foundation of the actor Michael J. Fox, a sufferer of Parkinson's disease, among other sources.

Explore further: Unique protein interaction may drive most common genetic cause of Parkinson's disease

More information: 'Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3' Kathrin Mudaa, Daniela Bertinettia, Frank Gesellchenb, Jennifer Sarah Hermanna, Felix von Zweydorfc, Arie Geerlofd, Anette Jacobe, Marius Ueffing, Christian Johannes Gloecknerc, Friedrich W. Herberga. PNAS www.pnas.org/content/early/201 … /1312701111.abstract

Related Stories

Unique protein interaction may drive most common genetic cause of Parkinson's disease

January 7, 2014
The most devastating aspect of Parkinson's disease may not be its debilitating symptoms, which rob its victims of their ability to control their own movement. It may not be the millions around the world and their families ...

Scientists identify 'clean-up' snafu that kills brain cells in Parkinson's disease

March 3, 2013
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how the most common genetic mutations in familial Parkinson's disease damage brain cells. The study, which published online today in ...

Blocking LRRK2 activity is not a simple answer to Parkinson's disease

May 29, 2012
Mutations in the LRRK2 gene are the most common cause of genetic Parkinson's disease (PD). New research published in BioMed Central's open access journal Molecular Neurodegeneration demonstrates that loss of function of LRRK2 ...

Discovering Parkinson's cell mechanism

November 28, 2013
A new doctoral thesis from University of Stavanger suggests possible explanations of how a specific protein associated with Parkinson's disease (DJ-1) might be implicated in the onset of the disease.

How disease mutations affect the Parkin protein

May 31, 2013
Researchers at the MRC Laboratory of Molecular Biology in the United Kingdom have determined the crystal structure of Parkin, a protein found in cells that when mutated can lead to a hereditary form of Parkinson's disease. ...

Recommended for you

Investigators eye new target for treating movement disorders

January 19, 2018
Blocking a nerve-cell receptor in part of the brain that coordinates movement could improve the treatment of Parkinson's disease, dyskinesia and other movement disorders, researchers at Vanderbilt University have reported.

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

New brainstem changes identified in Parkinson's disease

January 4, 2018
A pioneering study has found that patients with Parkinson's disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Caffeine level in blood may help diagnose people with Parkinson's disease

January 3, 2018
Testing the level of caffeine in the blood may provide a simple way to aid the diagnosis of Parkinson's disease, according to a study published in the January 3, 2018, online issue of Neurology, the medical journal of the ...

Researchers shed light on why exercise slows progression of Parkinson's disease

December 22, 2017
While vigorous exercise on a treadmill has been shown to slow the progression of Parkinson's disease in patients, the molecular reasons behind it have remained a mystery.

Robotic device improves balance and gait in Parkinson's disease patients

December 19, 2017
Some 50,000 people in the U.S. are diagnosed with Parkinson's disease (PD) every year. The American Institute of Neurology estimates there are one million people affected with this neurodegenerative disorder, with 60 years ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.