Study finds progenitor cells engage in 'apical abscission' to differentiate into neurons

January 10, 2014 by Bob Yirka report
Differentiating neurons in the embryonic spinal cord abscise their apical tips to detach from the ventricular surface. Credit: Raman Das

(Medical Xpress)—A pair of researchers working at the University of Dundee in the U.K. has discovered a new step during vertebrate neurogenesis—the process by which progenitor cells develop into neurons in embryos. In their paper published in the journal Science, Raman Das and Kate Storey describe how they used high-resolution live-cell imaging to observe early stage vertebrae brain development and in so doing discovered the previously unknown step during neurogenesis which they have called "apical abscission"—where precursor cells must leave the neural tube in which they develop to grow into different parts of the nervous system. In the same journal edition Samuel Tozer and Xavier Morin describe the process further in a Perspective piece.

For vertebrates, neuron precursor cells develop in what is known as a . Once they reach a certain maturity level, however, they must leave the confines of the neural tube in order to make their way to the various parts of what will eventually become the organism's nervous system. Prior to this study, it was generally assumed that the migration process was no more complicated than a simple withdrawal. Instead, closer inspection by the researchers has revealed that one part of the progenitor cell undergoes an abscission (where it is severed from the rest of the cell.)

Using a very high resolution microscope, the researchers watched neurogenesis unfold in embryonic chicken embryo cells. In its beginning stages, the progenitor cell has two main parts: the primary cilium and an apical part which is connected via a tentacle-like strand of cells. As the researchers watched, one tentacle constricted, causing the two parts of the progenitor to be severed—a process the researchers have dubbed "apical abscission." The lopped off part migrated to another location and would have slowly differentiated into a neuron had it been growing in an egg. The base section, the cilium stayed behind—because it holds the signaling part of the progenitor cell, the lopped off portion was no longer able to communicate with the rest of the system, which the believe is a critical part of neurogenesis.

Abscission of the apical tip of the differentiating neuron involves retention of the centrosome (red). Credit: Raman Das

The discovery of "apical abscission" marks a major milestone in research and perhaps cell division in general. It's not clear if the same process occurs in other types of , but Tozer and Morin suggest it seems reasonable to assume it does. More research will have to be conducted to find out.

The video will load shortly
Apical abscission mediates detachment of newborn neurons from the ventricle of the embryonic spinal cord. Credit: Raman Das

The video will load shortly
Differentiating neurons disassemble the primary cilium and retain the centrosome (red). Credit: Raman Das

Explore further: Wnt signaling pathway plays key role in adult nerve cell generation: study

More information: Apical Abscission Alters Cell Polarity and Dismantles the Primary Cilium During Neurogenesis, Science 10 January 2014: Vol. 343 no. 6167 pp. 200-204. DOI: 10.1126/science.1247521

Withdrawal of differentiating cells from proliferative tissue is critical for embryonic development and adult tissue homeostasis; however, the mechanisms that control this cell behavior are poorly understood. Using high-resolution live-cell imaging in chick neural tube, we uncover a form of cell subdivision that abscises apical cell membrane and mediates neuron detachment from the ventricle. This mechanism operates in chick and mouse, is dependent on actin-myosin contraction, and results in loss of apical cell polarity. Apical abscission also dismantles the primary cilium, known to transduce sonic-hedgehog signals, and is required for expression of cell-cycle-exit gene p27/Kip1. We further show that N-cadherin levels, regulated by neuronal-differentiation factor Neurog2, determine cilium disassembly and final abscission. This cell-biological mechanism may mediate such cell transitions in other epithelia in normal and cancerous conditions.

Press release

Related Stories

Wnt signaling pathway plays key role in adult nerve cell generation: study

September 10, 2012
Researchers from the University of Utah have gained new insight into the regulation of adult nerve cell generation in the hypothalamus, the part of the brain that regulates many aspects of behavior, mood, and metabolism. ...

Induction of adult cortical neurogenesis by an antidepressant

January 4, 2013
The production of new neurons in the adult normal cortex in response to the antidepressant, fluoxetine, is reported in a study published online this week in Neuropsychopharmacology.

Serotonin mediates exercise-induced generation of new neurons

May 13, 2013
Mice that exercise in running wheels exhibit increased neurogenesis in the brain. Crucial to this process is serotonin signaling. These are the findings of a study by researchers at the Max Delbrück Center Berlin-Buch. Surprisingly, ...

Researchers devise a method for reprogramming cells in urine into neural progenitor cells

December 10, 2012
(Medical Xpress)—Researchers in China have developed a technique for reprogramming cells found in urine into neural progenitor cells that are capable of growing into neurons. In their paper published in Nature Methods, ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.