Two proteins compete for one port on a growth factor: One promotes metastasis, the other blocks it

January 23, 2014, University of Texas M. D. Anderson Cancer Center

Consider two drivers, each with a key that fits the same car. Driver 1 wants simply to turn on the ignition and leave the vehicle idling, ready and waiting to roll. Driver 2 wants to take it on a destructive joy ride.

Such is the case with two proteins identified by scientists at The University of Texas MD Anderson Cancer Center that fit on to the same on an important cellular growth factor receptor called FGFR2 with starkly different results.

"There is competition for binding to FGFR2 and one of the two competitors, phospholipase Cγ1 (Plcγ1), will increase cancer cell metastasis. The other protein inhibits the opportunity for this to occur," said John Ladbury, Ph.D., professor of Biochemistry and Molecular Biology.

Ladbury is senior author of a paper published Sunday online at Nature Structural & Molecular Biology that describes the competition, identifies Plγcl's role and its relationship to the metastasis-blocking growth factor receptor bound protein 2 (Grb2).

In a 2012 paper in the journal Cell, Ladbury and colleagues showed that Grb2 binds to FGFR2 and holds it in check, ready to be activated by a growth factor to signal other proteins. In performing this role, Grb2 blocks the binding of other proteins such as Plcγ1.

More Grb2, less Plcγ1 stymies metastasis

These interactions occur outside normal activation of FGFR2 by growth factors, so the protein with the highest concentration levels in the cell wins the contest to bind to FGFR, or fibroblast growth factor receptor 2, Ladbury said. "In cells with depleted Grb2 concentration, Plcγ1gets on the receptor, increasing cellular motility – equipping cells to move, escape the tumor, invade other tissue and spread."

Quantifying the relative concentration of these two proteins in a patient's tumor, Ladbury said, might be developed into reliable markers for gauging the likelihood that the cancer will spread and guide treatment decisions.

For example, an analysis of an ovarian cancer patient's initial presentation could indicate early whether chemotherapy will be needed in addition to surgery to combat metastasis. Ovarian cancer patients with low Grb2 expression levels could have an increased risk that their cancer will spread.

Trade-off matters in at least 5 cancer types

Analysis of published data on 20 cancer cell lines including lung, ovarian, kidney, breast and colon cancers, showed that a cancer's metastatic potential is linked to the relative concentration of Plcγ1 and Grb2 expression. Overexpression of Plcγ1 and low expression of Grb2 resulted in a high likelihood of metastasis, while high Grb2 and low Plcγ1 indicated a low likelihood that the cancer will spread.

Ladbury and colleagues set out to explain this relationship and its apparent effect with a series of cell line experiments that showed:

  • Grb2 blocks the binding of Plcγ1 to FGFR2.
  • Both proteins connect with the same site on FGFR2, using a similar domain on each protein to connect to the growth factor receptor.
  • Binding to FGFR2 activates Plcγ1.
  • Overexpression of Plcγ1 leads to increased invasion of other tissues, a vital step in metastasis.

All of this action occurs in the cell's stable state, or homeostasis, before a growth factor stimulates FGFR2 into action, which is what made the team's 2012 finding so striking. The domain (SH3) that each protein uses to connect to FGFR2 is not used in normal signaling.

FGFR2 spans a cell's outer membrane, with its outer portion receiving and its inner region passing along activating signals that order other proteins to perform their functions. In this case, there's no active signaling in the usual sense, Ladbury said.

Crucial events occur in background activity of cells

"That a can find a receptor using its SH3 domain is an entirely new idea," Ladbury said. "There's a lot of background activity in cells, just to keep them ticking over and in the past we've kind of ignored what's happening there. Now we've shown that if these background activities are perturbed, they can lead to cancer."

The Ladbury group is pursuing these studies to quantify the respective amounts of Grb2, Plcγ1 and FGFR2 in cell lines to assess what levels might be prognostic. In addition they are investigating other receptors for their potential to bind SH3-domain containing proteins to build up a bigger picture of what pathways are involved in maintaining the stable state in cells.

Explore further: Grb2 protein holds powerful molecular signaling pathway in check

Related Stories

Grb2 protein holds powerful molecular signaling pathway in check

June 22, 2012
Once considered merely a passive link between proteins that matter, Grb2 - pronounced "grab2" - actually lives up to its nickname with its controlling grip on an important cell signaling pathway, scientists at The University ...

Study confirms fibroblast growth factor receptors as targets for pancreatic cancer treatment

December 17, 2013
Proteins called fibroblast growth factor receptors (FGFRs) have been implicated in the development of pancreatic cancer, which remains difficult to treat. Researchers at Roswell Park Cancer Institute (RPCI) have now confirmed ...

FAK helps tumor cells enter the bloodstream

January 20, 2014
Cancer cells have something that every prisoner longs for—a master key that allows them to escape. A study in The Journal of Cell Biology describes how a protein that promotes tumor growth also enables cancer cells to use ...

New knowledge on molecular mechanisms behind breast cancer

September 25, 2013
Researchers at University of Copenhagen have gained more insight into the molecular mechanisms of importance for, for example, cancer cell growth and metastasis. The research objective is improved and more targeted drugs. ...

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.