Stanford researchers reveal more about how our brains control our arms

January 22, 2014
Katherine Cora Ames, a doctoral student in the Neurosciences Graduate Program at Stanford, is first author on a mathematical analysis of the brain activity of monkeys as they make anticipated and unanticipated reaching motions. Credit: Tom Abate, Stanford Engineering

Ready, set, go. Sometimes that's how our brains work. When we anticipate a physical act, such as reaching for the keys we noticed on the table, the neurons that control the task adopt a state of readiness, like sprinters bent into a crouch.

Other times, however, our must simply react, such as if someone were to toss us the keys without gesturing first, to prepare us to catch.

How do the neurons in the brain control planned versus unplanned arm movements?

Krishna Shenoy, a Stanford professor of electrical engineering, neurobiology (by courtesy) and bioengineering (affiliate), wanted to answer that question as part of his group's ongoing efforts to develop and improve brain-controlled prosthetic devices.

In a paper published today in the journal Neuron, Shenoy and first author Katherine Cora Ames, a doctoral student in the Neurosciences Graduate Program, present a mathematical analysis of the brain activity of monkeys as they make anticipated and unanticipated reaching motions.

Monitoring the neurons

The experimental data came from recording the of neurons in the brain that control motor and premotor functions. The idea was to observe and understand the activity levels of these neurons during experiments in which the monkeys made planned or reactive arm movements.

What the researchers found is that when the monkeys knew what arm movement they were supposed to make and were simply waiting for the cue to act, electrical readings showed that the neurons went into what scientists call the prepare-and-hold state—the brain's equivalent of ready, set waiting for the cue to go.

But when the monkeys made unplanned or unexpected movements, the neurons did not go through the expected prepare-and-hold state.

"This was a surprise," Ames said.

Before the experiment, the researchers had believed that a prepare-and-hold state had to precede movement. In short, they thought the neurons had to go into a "ready, set" crouch before acting on the "go" command.

But they discovered otherwise in three variations of an experiment involving similar arm movements.

Experimental Design

In all three cases the monkeys were trained to touch a target that appeared on a display screen.

During each motion, the researchers measured the electrical activity of the neurons in control of .

In one set of experiments, the monkeys were shown the target but were trained not to touch it until they got the "go" signal. This is called a delayed reach experiment. It served as the planned action.

In a second set of experiments the monkeys were trained to touch the target as soon as it appeared. This served as the unplanned action.

In a third variant, the position of the target was changed. It briefly appeared in one location on the screen. The target then reappeared in a different location. This required the monkeys to revise their movement plan.

First monkey see, then monkey do

Ames said that, in all three instances, the first information to reach the neurons was awareness of the target. "Perception always occurred first," Ames said.

Then, about 50 milliseconds later, some differences appeared in the data.

When the had to wait for the go command, the brain recordings showed that the neurons went into a discernable prepare-and-hold state.

But in the other two cases, the neurons did not enter the prepare-and-hold state.

Instead, roughly 50 milliseconds after the electrical readings showed evidence of perception, a change in neuronal activity signaled the command to touch the target; it came with no apparent further preparation between perception and action. "Ready, set" was unnecessary. In these instances, the neurons just said, "Go!"

Applications

"This study changes our view of how movement is controlled," Ames said. "First you get the information about where to move. Then comes the decision to move. There is no specific prepare-and-hold stage unless you are waiting for the signal to move."

These nuanced understandings are important to Shenoy. His lab develops and improves electronic systems that can convert neural activity into electronic signals in order to control a prosthetic arm or move the cursor on a computer screen.

One example of such efforts is the BrainGate clinical trial here at Stanford, now being conducted under U.S. Food & Drug Administration supervision, to test the safety of brain-controlled, computer cursor systems – "think-and-click" communication for people who can't move.

"In addition to advancing basic brain science, these new findings will lead to better brain-controlled prosthetic arms and communication systems for people with paralysis," Shenoy said.

Explore further: Brain-machine interface lets monkeys control two virtual arms (w/ Video)

Related Stories

Brain-machine interface lets monkeys control two virtual arms (w/ Video)

November 6, 2013
In a study led by Duke researchers, monkeys have learned to control the movement of both arms on an avatar using just their brain activity.

Touch and movement neurons shape the brain's internal image of the body

August 26, 2013
The brain's tactile and motor neurons, which perceive touch and control movement, may also respond to visual cues, according to researchers at Duke Medicine. The study in monkeys, which appears online Aug. 26, 2013, in the ...

New algorithm greatly improves speed and accuracy of thought-controlled computer cursor

November 18, 2012
Stanford researchers have designed the fastest, most accurate algorithm yet for brain-implantable prosthetic systems that can help disabled people maneuver computer cursors with their thoughts. The algorithm's speed, accuracy ...

Researchers surprised to find how neural circuits identify information needed for decisions

November 6, 2013
While eating lunch you notice an insect buzzing around your plate. Its color and motion could both influence how you respond. If the insect was yellow and black you might decide it was a bee and move away. Conversely, you ...

By decoding brain activity, scientists read monkeys' inner thoughts

July 19, 2012
Anyone who has looked at the jagged recording of the electrical activity of a single neuron in the brain must have wondered how any useful information could be extracted from such a frazzled signal.

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.