Stem cell replacement for common age-related blindness

January 13, 2014, University of Bonn
Preparations for operating: Dr. med. Boris V. Stanzel (left), Claudine Strack and Ralf Brinken from the Department of Ophthalmology of the Bonn University Hospital. Credit: Volker Lannert/Uni Bonn

Age-related macular degeneration (AMD) is the most frequent cause of blindness. Scientists at the Department of Ophthalmology at the Bonn University Hospital and from the Neural Stem Cell Institute in New York (USA) have developed a method for using stem cells to replace cells in the eye destroyed by AMD. The implants survived in rabbit eyes for several weeks. Additional research is needed for clinical application. The results are now presented in the journal Stem Cell Reports.

About four and a half million people in Germany suffer from (AMD). It is associated with a gradual loss of visual acuity and the ability to read or drive a car can be lost. The center of the field of vision is blurry, as if covered by a veil. This is caused by damage to a cell layer under the retina, known as the retinal pigment epithelium (RPE). It coordinates the metabolism and function of the sensory in the eye. Inflammatory processes in this layer are associated with AMD and "metabolic waste" is less efficiently recycled. To date, there is no cure for AMD; treatments can only relieve the symptoms.

Scientists from the Bonn University Department of Ophthalmology, together with researchers in New York (USA), have now tested a new method in rabbits by which the damaged RPE cells in AMD may be replaced. The researchers implanted different RPEs which were obtained, among others, from stem cells from adult human donors. "These cells have now been used for the first time in research for transplantation purposes," says lead author Dr. Boris V. Stanzel from the Department of Ophthalmology at the University of Bonn. The discovery and characterization of the adult RPE stem cells was performed in the group of Prof. Sally Temple and Dr. Jeffrey Stern from the Neural Stem Cell Institute (NSCI) in New York, USA. Dr. Timothy Blenkinsop at NSCI pioneered methods to grow them to closely resemble true RPE.

Researchers in Bonn developed the implantation techniques

The implantation techniques for the new method were developed by researchers working with Dr. Stanzel from the Department of Ophthalmology at the University of Bonn. They allowed the stem cell derived RPE to grow on small polyester discs, thus yielding a thin cell layer. The researchers implanted this human RPE monolayer in rabbits under the retina. "Our research group developed special instruments to implant the replacement cells can under the retina," reports Dr. Stanzel. After four days, the researchers used tomographic methods to check whether the replacement cells had integrated into the surrounding cell layers. "The implanted cells were alive," reports the researcher at the Department of Ophthalmology at the University of Bonn. "That is a clear indication that they have joined with the surrounding cells." After one week, the implanted cell layer was still stable. Even after four weeks, tissue examinations showed that the transplant was intact.

A new approach for possible treatment of AMD

"The results from the experiments prove that retinal pigment epithelial cells obtained from adult have the potential to replace cells destroyed by age-related macular degeneration," summarizes Dr. Stanzel. Moreover, using the newly developed basic method, it will be possible in the future to test which stem cell lines are suitable for transplantation in the eye. "However, clinical application is still far away," says Dr. Stanzel. More research is needed.

Explore further: New hope for patients with macular degeneration

More information: Human RPE stem cells grown into Polarized RPE Monolayers on a Polyester Matrix are Maintained after grafting into Rabbit Subretinal Space, Journal "Stem Cell Reports", DOI: 10.1016/j.stemcr.2013.11.005

Related Stories

New hope for patients with macular degeneration

December 13, 2013
Macular degeneration is a leading cause of blindness in Australia, affecting one in seven people over the age of 50.

Pilot clinical study into iPS cell therapy for eye disease starts in Japan

July 30, 2013
RIKEN is pleased to announce the launch of a pilot study to assess the safety and feasibility of the transplantation of autologous induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cell sheets ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.