Unexpected player in regulation of blood cholesterol levels

January 27, 2014
Researchers reveal an unexpected role for the protein KIF13B in helping cells internalize a receptor (LRP1) that helps regulate blood cholesterol levels. Here, LRP1 (red) is internalized into endosomes within the cell by a scaffolding complex that includes KIF13B (green). Credit: Kanai et al., 2014

Kinesins are motor proteins that "walk" along microtubules and transport various cargoes throughout the cell. A study in The Journal of Cell Biology uncovers an unexpected role for one kinesin in the pathway that regulates cholesterol levels in the blood.

Researchers from The University of Tokyo in Japan studied mice lacking KIF13B, one of 45 kinesins in the human genome. KIF13B is particularly abundant in the liver, and KIF13B mutant mice were found to have elevated levels of cholesterol in their blood.

The researchers discovered that KIF13B concentrates within at the spot where material such as LDL—the "bad" form of cholesterol—is taken up from the bloodstream. LDL enters the cell through endocytosis, a process in which cells absorb molecules by engulfing them. Endocytosis can be mediated in the by small clathrin-coated vesicles or by small pits called caveolae. The cell membrane receptor LRP1 binds and engulfs LDL through both of these pathways.

The researchers discovered that LRP1 and KIF13B appeared together at the cell membrane and that KIF13B promoted the endocytosis of LRP1 by recruiting the receptor, along with LDL, into caveolae.

"Clathrin-mediated endocytosis has been studied intensively," says senior author Nobutaka Hirokawa. "But this is the first study to identify a mechanism for caveolin-mediated internalization."

Surprisingly, KIF13B's motor functions were not employed in this process. Rather, the kinesin was found to work as a scaffold at the cell membrane to help link LRP1 to caveolae.

"This scaffolding function is very unexpected for a motor protein," says Hirokawa. "But, after LRP1 is internalized, KIF13B could work as a motor to transport endosomes through the cytoplasm."

Explore further: New study says molecular 'switch' may play role in tumor suppression

More information: Kanai, Y., et al. 2014. J. Cell Biol. DOI: 10.1083/jcb.201309066

Related Stories

New study says molecular 'switch' may play role in tumor suppression

January 13, 2013
Newly published research by Indiana University structural biologist Joel Ybe and colleagues identifies a "topology switch" in the protein clathrin, the function of which may shed light on molecular processes involved in tumor ...

Endocytosis is simpler than suspected

July 7, 2011
A protein by the name of clathrin plays a key part in endocytosis, the process by which living cells absorb large molecules. The protein can form “cages”, in which these molecules become trapped. Until recently, ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.