Novel combination of techniques reveals new details about the neuronal networks for memory

February 7, 2014
Figure 1: Fluorescent labeling reveals mossy fibers (red) projecting from the dentate gyrus (green) into the CA2 subregion (orange). Credit: Keigo Kohara, RIKEN–MIT Center for Neural Circuit Genetics

Learning and memory are believed to occur as a result of the strengthening of synaptic connections among neurons in a brain structure called the hippocampus. The hippocampus consists of five subregions, and a circuit formed between four of these is thought to be particularly important for memory formation. Keigo Kohara and colleagues from the RIKEN–MIT Center for Neural Circuit Genetics and RIKEN BioResource Center have now identified a previously unknown circuit involving the fifth subregion.

For a hundred years, memory research has typically focused on the main circuit, which projects from layer II of the entorhinal cortex via the dentate gyrus to subregion CA3 and then CA1. Subregion CA2 lies between CA3 and CA1 but its cells are less elaborate than those of its neighbors and were thought not to receive inputs from the dentate gyrus.

Kohara and his colleagues combined anatomical, genetic and physiological techniques to analyze the connections formed by in the CA2 subregion of the in unprecedented detail. First, they identified the CA2 subregion by examining the expression of three genes that encode proteins called RGS14, PCP4 and STEP using a fluorescent marker to label nerve fibers—a technique called fluorescent immunohistochemistry. They were surprised to discover that, contrary to expectations, CA2 neurons receive extensive inputs from cells in the (Fig. 1).

The researchers reinforced their anatomical observations by performing a series of experiments in genetically engineered mice expressing light-sensitive algal proteins in their mossy fibers. They stimulated the fibers with pulses of laser light and simultaneously recorded activity in the other subregions with microelectrodes. This procedure showed that stimulation caused neurons in both CA2 and CA3 to fire quickly, followed by neurons in CA1 after a brief delay.

Another set of experiments revealed that neurons in CA2 also send fibers to the CA1 subregion, forming an alternative circuit. The researchers found that, unlike CA3 neurons, the fibers of CA2 neurons preferentially enter the deeper layers of CA1. They also found that cells in layer III of the do not project to CA2, again contrary to previous reports.

"It was previously unclear how memory is transferred from the dorsal hippocampus, which is involved in spatial memory, to the ventral hippocampus, which is involved in emotional ," says Kohara. "Our findings tell us that the CA2-linked circuit may be the route by which spatial information combines with emotional information because it relays information from the dorsal to the ventral hippocampus."

Explore further: Study reveals how the brain links memories of sequential events

More information: Kohara, K., Pignatelli, M., Rivest, A. J., Jung, H.-Y., Kitamura, T., Suh, J., Frank, D., Kajikawa, K., Mise, N., Obata, Y. et al. "Cell type–specific genetic and optogenetic tools reveal hippocampal CA2 circuits." Nature Neuroscience 17, 269–279 (2014). dx.doi.org/10.1038/nn.3614

Related Stories

Study reveals how the brain links memories of sequential events

January 23, 2014
Suppose you heard the sound of skidding tires, followed by a car crash. The next time you heard such a skid, you might cringe in fear, expecting a crash to follow—suggesting that somehow, your brain had linked those two ...

Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice

September 13, 2013
The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have important consequences, ...

Newly found 'volume control' in the brain promotes learning, memory

January 9, 2013
Scientists have long wondered how nerve cell activity in the brain's hippocampus, the epicenter for learning and memory, is controlled—too much synaptic communication between neurons can trigger a seizure, and too little ...

The neuroscience of finding your lost keys: How the brain keeps track of similar but distinct memories

March 21, 2013
Ever find yourself racking your brain on a Monday morning to remember where you put your car keys? When you do find those keys, you can thank the hippocampus, a brain region responsible for storing and retrieving memories ...

Learning requires rhythmical activity of neurons

September 26, 2012
The hippocampus represents an important brain structure for learning. Scientists at the Max Planck Institute of Psychiatry in Munich discovered how it filters electrical neuronal signals through an input and output control, ...

Brain waves encode information as time signals

December 16, 2013
How information is processed and encoded in the brain is a central question in neuroscience, as it is essential for high cognitive function such as learning and memory. Theta-gamma oscillations are "brain waves" observed ...

Recommended for you

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

Study suggests serotonin may worsen tinnitus

August 22, 2017
Millions of people suffer from the constant sensation of ringing or buzzing in the ears known as tinnitus, creating constant irritation for some and severe anxiety for others. Research by scientists at OHSU shows why a common ...

Brain region mediates pleasure of eating

August 22, 2017
Providing the body with food is essential for survival. But even when full, we can still take pleasure in eating. Researchers at the Max Planck Institute of Neurobiology in Martinsried and the Friedrich Miescher Institute ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Contact in sports may lead to differences in the brains of young, healthy athletes

August 22, 2017
People who play contact sports show changes to their brain structure and function, with sports that have greater risk of body contact showing greater effects on the brain, a new study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.