'Cut-and-paste' gene defect hints at cause of developmental disease

February 10, 2014
'Cut-and-paste' gene defect hints at cause of developmental disease
Associate Professor Joan Heath has uncovered a new way that protein production is regulated in development. Credit: Walter and Eliza Hall Institute, Australia

Melbourne researchers have made a major step forward in understanding how changes in an essential cellular process, called minor class splicing, may cause a severe developmental disease.

Using zebrafish, which is a popular laboratory model for studying development, the researchers discovered that the action of a protein called Rnpc3 is critical for the growth of many organs. Rnpc3 functions to regulate protein production through a process called minor class messenger RNA splicing.

Messenger RNA is a molecule that is required to convert the genetic information encoded in DNA into proteins. RNA splicing is a 'cut and paste' process that cuts unwanted sequences, called introns, out of messenger RNA, and pastes the remaining pieces back together again.

Without splicing, proteins cannot be made correctly from genes. Ludwig Member and Associate Professor Joan Heath at the Walter and Eliza Hall Institute and Dr Sebastian Markmiller, now at the University of California, San Diego, showed that the protein Rnpc3 is required for the rapid growth of organs, including the intestine, liver, pancreas and eye, during zebrafish development. The findings are published today in the journal Proceedings of the National Academy of Sciences.

Associate Professor Heath said the finding was important because it helped to shed light on how defects in minor class splicing cause a severe human developmental disorder known as Taybi-Linder syndrome.

"Altogether there are about 200,000 introns in the genome and most of these are removed by a process known as major class splicing," Associate Professor Heath said. "Minor class splicing is much rarer and is used to remove only a few hundred introns. Why this minor class splicing pathway exists at all, and how important it is, has eluded geneticists for more than two decades.

"We have discovered that minor class splicing is critical for the proper expression of genes that are themselves important for regulating . This means that defects in minor class splicing can have widespread effects on which genes are switched on. This is particularly crucial during development when rapid changes in gene expression and are required," Associate Professor Heath said.

"In the long-run, we anticipate that our research will show that minor class splicing contributes to other diseases that are currently not fully understood," she said.

Explore further: Cellular suicide switch discovered

More information: Minor class splicing shapes the zebrafish transcriptome during development, www.pnas.org/cgi/doi/10.1073/pnas.1305536111

Related Stories

Cellular suicide switch discovered

December 4, 2013
A newly discovered early-warning system triggers cellular suicide when a critical RNA editing system breaks down.

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.