Early atherosclerotic plaques regress when cholesterol levels are lowered

February 27, 2014, Karolinska Institutet

Early but not advanced forms of atherosclerotic plaques in the vessel wall disappear when the levels of 'bad' cholesterol are lowered, according to a study in mice from Karolinska Institutet, Sweden. The findings, published in PLoS Genetics, indicate that preventative cholesterol-lowering treatment could prevent more advanced, clinically relevant plaque to develop.

Almost half of all deaths worldwide are caused by strokes and heart attacks. The main underlying cause is , where fat accumulates in the in the so-called plaques. Atherosclerosis is a progressive disease where advanced and unstable plaques develop over time. When these plaques burst a blood clot is created, which in turn could cause stroke or heart attack, depending on how and where the blood clot is formed. It is therefore preferable to either prevent advanced plaque development, or to reduce and stabilise the plaques in those where they have already developed.

In the current study, the researchers used mice with elevated levels of 'bad' cholesterol (LDL cholesterol) which forms advance plaques, similar to what happens in humans with high LDL. With a genetic switch, researchers could also lower in the blood at any desirable time point. They discovered that when LDL cholesterol was lowered, early plaques disappeared almost entirely, which to some extent surprised the researchers. However, mature and advanced plaques reduced but were still present. In humans, LDL cholesterol can be lowered by using cholesterol-lowering drugs such as statins.

"If lowering of LDL cholesterol affects atherosclerosis in humans in the same way, our observations mean that clinically advanced plaques could be prevented if cholesterol-lowering treatments are administered early enough in individuals with increased risk of cardiovascular disease. However, the perennial problem is to identify these individuals with certainty," says Dr Josefin Skogsberg at the Department of Medical Biochemistry and Biophysics, one of the principal researchers involved in the study.

The researchers also identified networks of genes that were activated by the cholesterol lowering procedure and caused the regression of the . There proved to be much greater differences in these networks between early, mature and advanced plaques than what researchers had believed.

"We believe that the regulators of the networks, "network wiring stations" may be suitable parallel treatment targets in order to improve the impact of the LDL cholesterol lowering on the regression of in individuals with mature and advanced plaques," says Dr Skogsberg.

Explore further: High good and low bad cholesterol levels are healthy for the brain, too

Related Stories

High good and low bad cholesterol levels are healthy for the brain, too

December 30, 2013
High levels of "good" cholesterol and low levels of "bad" cholesterol are correlated with lower levels of the amyloid plaque deposition in the brain that is a hallmark of Alzheimer's disease, in a pattern that mirrors the ...

New signal stabilizes atherosclerotic plaques

July 31, 2013
Atherosclerosis is an inflammatory disease with accumulation of cholesterol in the vessel walls. The atherosclerotic plaque is built up throughout life and when it ruptures it leads to heart attack or stroke. T cells are ...

Inhibiting a single protein could improve the treatment of atherosclerosis

October 15, 2013
Researchers of the Spanish research council (Consejo Superior de Investigaciones Científicas, CSIC) and the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have discovered that inhibiting the protein Rcan1 in ...

Study reveals link between high cholesterol and Alzheimer's disease

September 12, 2011
People with high cholesterol may have a higher risk of developing Alzheimer's disease, according to a study published in the September 13, 2011, issue of Neurology, the medical journal of the American Academy of Neurology.

Macrophage proliferation appears to drive progression of atherosclerosis

August 11, 2013
New insights into the development of vulnerable atherosclerotic plaques could lead to better treatment or prevention of heart attacks and strokes. In a report being published online in Nature Medicine, researchers at the ...

Recommended for you

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.