Breakthrough in HIV and Hep C vaccine research

March 25, 2014

(Medical Xpress)—Plans for a new type of DNA vaccine to protect against the deadly HIV and Hepatitis C viruses have taken an important step forward, with University of Adelaide researchers applying for a patent based on groundbreaking new research.

Professor Eric Gowans from the University's Discipline of Surgery, based at the Basil Hetzel Institute at the Queen Elizabeth Hospital, has submitted a patent application for what he describes as a relatively simple but effective technique to stimulate the body's immune system response, thereby helping to deliver the vaccine.

While pre-clinical research into this vaccination technique is still underway, he's now searching for a commercial partner to help take it to the next stage.

Professor Gowans' work has focused on utilising the so-called "accessory" or "messenger" cells in the immune system, called , to activate an immune response. These are a type of white blood cell that play a key role during infection and vaccination.

"There's been a lot of work done in the past to target the dendritic cells, but this has never been effective until now," Professor Gowans says. "What we've done is incredibly simple, but often the simple things are the best approach. We're not targeting the dendritic cells directly - instead, we've found an indirect way of getting them to do what we want."

Professor Gowans and his team have achieved this by including a protein that causes a small amount of cell death at the point of vaccination.

"The are important because they set off danger signals to the body's . This results in inflammation, and the dendritic cells become activated. Those cells then create an environment in which the vaccination can be successful," Professor Gowans says.

Using a micro-needle device provided by United States company FluGen Inc., the researchers can puncture the skin to a depth of 1.5mm, delivering the vaccination directly into the skin. "We chose the skin instead of the muscle tissue, which is more common for DNA vaccines, because the skin has a high concentration of dendritic ," Professor Gowans says.

Because the technique has the potential to translate to other, more common viruses in addition to the devastating HIV and Hepatitis C, the project attracted seed funding from The Hospital Research Foundation, and additional funding from the National Health and Medical Research Council (NHMRC).

The research is still in the pre-clinical phase, with a patient study due next year. "This technique has worked much better than I anticipated," Professor Gowans says. "We're now ready for a commercial partner to help us take this to the next phase, and we're in discussions with some potential partners at the moment."

Explore further: Getting personal with hep B vaccines

Related Stories

Getting personal with hep B vaccines

December 19, 2013
Therapeutic vaccines that boost antiviral immunity provide an attractive alternative to drug therapy for people who are infected with the hepatitis B virus (HBV). Yet, the large amount of genetic diversity found in circulating ...

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Immunology researchers uncover pathways that direct immune system to turn 'on' or 'off'

March 18, 2014
(Medical Xpress)—A key discovery explaining how components of the immune system determine whether to activate or to suppress the immune system, made by Kelvin Lee, MD, Professor of Oncology and Co-Leader of the Tumor Immunology ...

Novel cancer vaccine holds promise against ovarian cancer, mesothelioma

March 5, 2014
A novel approach to cancer immunotherapy – strategies designed to induce the immune system to attack cancer cells – may provide a new and cost-effective weapon against some of the most deadly tumors, including ovarian ...

Modified immune cells seek and destroy melanoma

June 24, 2013
In this issue of the Journal of Clinical Investigation, researchers led by Scott Pruitt at Duke University and Merck Research Laboratories report on a human clinical trial in which modified dendritic cells, a component of ...

Bacteria may assist the immune system response against cancer

March 3, 2014
(Medical Xpress)—Recent research from the University of Otago shows that bacteria may assist the body's immune system response against cancer cells and help fight tumours like melanoma.

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.