Breakthrough in HIV and Hep C vaccine research

March 25, 2014, University of Adelaide

(Medical Xpress)—Plans for a new type of DNA vaccine to protect against the deadly HIV and Hepatitis C viruses have taken an important step forward, with University of Adelaide researchers applying for a patent based on groundbreaking new research.

Professor Eric Gowans from the University's Discipline of Surgery, based at the Basil Hetzel Institute at the Queen Elizabeth Hospital, has submitted a patent application for what he describes as a relatively simple but effective technique to stimulate the body's immune system response, thereby helping to deliver the vaccine.

While pre-clinical research into this vaccination technique is still underway, he's now searching for a commercial partner to help take it to the next stage.

Professor Gowans' work has focused on utilising the so-called "accessory" or "messenger" cells in the immune system, called , to activate an immune response. These are a type of white blood cell that play a key role during infection and vaccination.

"There's been a lot of work done in the past to target the dendritic cells, but this has never been effective until now," Professor Gowans says. "What we've done is incredibly simple, but often the simple things are the best approach. We're not targeting the dendritic cells directly - instead, we've found an indirect way of getting them to do what we want."

Professor Gowans and his team have achieved this by including a protein that causes a small amount of cell death at the point of vaccination.

"The are important because they set off danger signals to the body's . This results in inflammation, and the dendritic cells become activated. Those cells then create an environment in which the vaccination can be successful," Professor Gowans says.

Using a micro-needle device provided by United States company FluGen Inc., the researchers can puncture the skin to a depth of 1.5mm, delivering the vaccination directly into the skin. "We chose the skin instead of the muscle tissue, which is more common for DNA vaccines, because the skin has a high concentration of dendritic ," Professor Gowans says.

Because the technique has the potential to translate to other, more common viruses in addition to the devastating HIV and Hepatitis C, the project attracted seed funding from The Hospital Research Foundation, and additional funding from the National Health and Medical Research Council (NHMRC).

The research is still in the pre-clinical phase, with a patient study due next year. "This technique has worked much better than I anticipated," Professor Gowans says. "We're now ready for a commercial partner to help us take this to the next phase, and we're in discussions with some potential partners at the moment."

Explore further: Getting personal with hep B vaccines

Related Stories

Getting personal with hep B vaccines

December 19, 2013
Therapeutic vaccines that boost antiviral immunity provide an attractive alternative to drug therapy for people who are infected with the hepatitis B virus (HBV). Yet, the large amount of genetic diversity found in circulating ...

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Immunology researchers uncover pathways that direct immune system to turn 'on' or 'off'

March 18, 2014
(Medical Xpress)—A key discovery explaining how components of the immune system determine whether to activate or to suppress the immune system, made by Kelvin Lee, MD, Professor of Oncology and Co-Leader of the Tumor Immunology ...

Novel cancer vaccine holds promise against ovarian cancer, mesothelioma

March 5, 2014
A novel approach to cancer immunotherapy – strategies designed to induce the immune system to attack cancer cells – may provide a new and cost-effective weapon against some of the most deadly tumors, including ovarian ...

Modified immune cells seek and destroy melanoma

June 24, 2013
In this issue of the Journal of Clinical Investigation, researchers led by Scott Pruitt at Duke University and Merck Research Laboratories report on a human clinical trial in which modified dendritic cells, a component of ...

Bacteria may assist the immune system response against cancer

March 3, 2014
(Medical Xpress)—Recent research from the University of Otago shows that bacteria may assist the body's immune system response against cancer cells and help fight tumours like melanoma.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.