Novel cancer vaccine holds promise against ovarian cancer, mesothelioma

March 5, 2014
The Jantibody fusion protein, combining an antibody fragment targeting an antigen found on tumor cells with an immune-response-inducing protein, MTBhsp70, activates dendritic cells against several tumor antigens and induces a number of T-cell-based immune responses. Credit: Jianping Yuan, Ph.D., Massachusetts General Hospital Vaccine and Immunotherapy Center

A novel approach to cancer immunotherapy – strategies designed to induce the immune system to attack cancer cells – may provide a new and cost-effective weapon against some of the most deadly tumors, including ovarian cancer and mesothelioma. Investigators from the Massachusetts General Hospital (MGH) Vaccine and Immunotherapy Center report in the Journal of Hematology & Oncology that a protein engineered to combine a molecule targeting a tumor-cell-surface antigen with another protein that stimulates several immune functions prolonged survival in animal models of both tumors.

"Some approaches to creating cancer vaccines begin by extracting a patient's own immune , priming them with tumor antigens and returning them to the patient, a process that is complex and expensive," says Mark Poznansky, MD, PhD, director of the MGH Vaccine and Immunotherapy Center and senior author of the report. "Our study describes a very practical, potentially broadly applicable and low-cost approach that could be used by oncologists everywhere, not just in facilities able to harvest and handle patient's cells."

The MGH team's vaccine stimulates the patient's own , a type of immune cell that monitors an organism's internal environment for the presence of viruses or bacteria, ingests and digests pathogens encountered, and displays antigens from those pathogens on their surface to direct the activity of other immune cells. As noted above, existing cancer vaccines that use dendritic cells require extracting cells from a patient's blood, treating them with an engineered protein or nucleic acid that combines tumor antigens with immune-stimulating molecules, and returning the activated dendritic cells to the patient.

The approach developed by the MGH team starts with the engineered protein, which in this case fuses an antibody fragment targeting a protein called mesothelin – expressed on the surface of such tumors as mesothelioma, and pancreatic cancer – to a protein from the tuberculosis bacteria that stimulates the activity of dendritic and other immune cells. In this system, the dendritic cells are activated and targeted against tumor cells while remaining inside the patient's body.

In the experiments described in the paper, the MGH team confirmed that their mesothelin-targeting fusion protein binds to mesothelin on either ovarian cancer or mesothelioma cells, activates dendritic cells, and enhances the cells' processing and presentation of several different tumor antigens, inducing a number of T-cell-based immune responses. In mouse models of both tumors, treatment with the fusion protein significantly slowed tumor growth and extended survival, probably through the activity of cytotoxic CD8 T cells.

"Many patients with advanced cancers don't have enough functioning immune cells to be harvested to make a vaccine, but our protein can be made in unlimited amounts to work with the immune cells patients have remaining," explains study co-author Jeffrey Gelfand, MD, senior scientist at the Vaccine and Immunotherapy Center. "We have created a potentially much less expensive approach to making a therapeutic cancer vaccine that, while targeting a single tumor antigen, generates an immune response against multiple antigens. Now if we can combine this with newly-described ways to remove the immune system's "brakes" – regulatory functions that normally suppress persistent T-cell activity – the combination could dramatically enhance ."

Poznansky adds that the tumors that might be treated with the mesothelin-targeting vaccine – ovarian cancer, pancreatic cancer and – all have poor survival rates. "Immunotherapy is generally nontoxic, so this has the potential of safely extending survival and reducing the effects of these tumors, possibly even cutting the risk of recurrence. We believe that this approach could ultimately be used to target any type of cancer and are currently investigating an improved targeting approach using personalized antigens." The MGH team just received a two-year grant from the Department of Defense Congressionally Directed Medical Research Program to continue their research.

Explore further: Cancer vaccine could use immune system to fight tumors

Related Stories

Cancer vaccine could use immune system to fight tumors

February 27, 2014
Cincinnati Cancer Center (CCC) and UC Cancer Institute researchers have found that a vaccine, targeting tumors that produce a certain protein and receptor responsible for communication between cells and the body's immune ...

Researchers target cancer stem cells in malignant brain tumors

January 6, 2014
Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells – cells from which malignant brain tumors are believed to originate ...

New data for engineering immune cells shows early promise in solid tumors

December 20, 2013
Engineered immune cells, called CARTmeso cells, designed to direct antitumor immune responses toward tumors that carry a protein called mesothelin, showed antitumor activity in two patients with advanced cancers that had ...

Researchers find promising results with local hyperthermia of tumors

March 4, 2014
A combination of iron-oxide nanoparticles and an alternating magnetic field, which together generate heat, have activated an immune system response to tumors in mice according to an accepted manuscript by Dartmouth-Hitchcock ...

Engineered T cells kill tumors but spare normal tissue in an animal model

April 7, 2013
The need to distinguish between normal cells and tumor cells is a feature that has been long sought for most types of cancer drugs. Tumor antigens, unique proteins on the surface of a tumor, are potential targets for a normal ...

New cancer 'vaccine' shows future promise in treating and preventing metastatic cancers

February 27, 2013
Preclinical, laboratory studies suggest a novel immunotherapy could potentially work like a vaccine against metastatic cancers, according to scientists at Virginia Commonwealth University Massey Cancer Center. Results from ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.