Researchers find promising results with local hyperthermia of tumors

March 4, 2014, Dartmouth College
Dartmouth researchers find promising results with local hyperthermia of tumors
This image shows a mechanism of anti-tumor immune resistance induced by local hyperthermia treatment. Credit: NCCC

A combination of iron-oxide nanoparticles and an alternating magnetic field, which together generate heat, have activated an immune system response to tumors in mice according to an accepted manuscript by Dartmouth-Hitchcock Norris Cotton Center researchers in the journal Nanomedicine: Nanotechnology, Biology and Medicine released online on February 24, 2014.

"The study demonstrates that controlled heating of one tumor can stimulate an that attacks another tumor that has not had the heat treatment," said Steve Fiering, PhD, Norris Cotton Cancer Center researcher and professor of Microbiology and Immunology, and of Genetics at the Geisel School of Medicine at Dartmouth. "This is one way to try to train the to attack metastatic tumors that may not be recognized yet."

Researchers injected iron-oxide nanoparticles into the tumor and then activated those agents with magnetic energy. Researchers were able to activate antigen-presenting dendritic cells in the body's immune system. Dendritic cells somewhat serve as "quarterbacks" for body's immune system by calling for quick coordinated protection against an attack. The "quarterback" cells show the defensive "killer" T cells (CD8+ cells) who to attack and these cells then directly attack and send out an alert system to engage other cells in the fight against the . The combination of these two aspects of the immune response reduce risk of recurrence and discourage spreading or metastasis of the cancer. This result was observed in sites close to the primary tumor as well as distant sites. In the experiments conducted as part of this study the primary tumor resisted regrowth for one month following overheating.

The magnetic hyperthermia system used was developed by co-author P. Jack Hoopes, DVM, PhD co-director of Norris Cotton Cancer Center's Nanotechnology Working Group. "It enables very precise control of the heating to keep the temperature at a uniform 43 degrees C for as long as desired," said Fiering. "This precise control was the key to optimal immune stimulation."

The experiment included mouse colon and, melanoma cancers. Tumors responded to the heat by growing more slowly or disappearing completely. A higher temperature was better at eliminating primary tumors that were heat treated, but did not activate the immune system as well to find and attack metastatic tumors. Treatment of larger primary tumors generated a stronger immune response.

In the effort to develop better cancer treatments, the challenge is to find ways to cure metastatic disease. "The use of the immune system through cancer immunotherapy is a very exciting field currently and promises to contribute significantly to elimination of ," said Fiering. "The approach demonstrated is a good new option to be combined with other immunotherapy strategies for cancer therapy."

Standard cancer care involves surgery, but surgeons have few tools to guarantee the removal of every cancer cell, especially when there is unrecognized metastases in other anatomic locations. An approach like local hyperthermia one day might be used to kick start the immune system to ward off any cancer not removed by surgery to increase the chances of treatment success.

Explore further: Modulating the immune system to combat metastatic cancer

More information: www.nanomedjournal.com/article … (14)00037-9/abstract

Related Stories

Modulating the immune system to combat metastatic cancer

May 24, 2013
Cancer cells spread and grow by avoiding detection and destruction by the immune system. Stimulation of the immune system can help to eliminate cancer cells; however, there are many factors that cause the immune system to ...

Researchers discover how cancer 'invisibility cloak' works

October 28, 2013
Researchers at National Jewish Health have discovered how a lipid secreted by cancer tumors prevents the immune system from mounting an immune response against it. When lysophosphatidic acid (LPA) binds to killer T cells, ...

Researchers target cancer stem cells in malignant brain tumors

January 6, 2014
Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells – cells from which malignant brain tumors are believed to originate ...

Cancer vaccine could use immune system to fight tumors

February 27, 2014
Cincinnati Cancer Center (CCC) and UC Cancer Institute researchers have found that a vaccine, targeting tumors that produce a certain protein and receptor responsible for communication between cells and the body's immune ...

Bacteria may assist the immune system response against cancer

March 3, 2014
(Medical Xpress)—Recent research from the University of Otago shows that bacteria may assist the body's immune system response against cancer cells and help fight tumours like melanoma.

Magnetic medicine: Nanoparticles and magnetic fields train immune cells to fight cancer in mice

February 25, 2014
Using tiny particles designed to target cancer-fighting immune cells, Johns Hopkins researchers have trained the immune systems of mice to fight melanoma, a deadly skin cancer. The experiments, described on the website of ...

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.