Surprising new way to kill cancer cells

March 21, 2014, Northwestern University

Northwestern Medicine scientists have demonstrated that cancer cells – and not normal cells – can be killed by eliminating either the FAS receptor, also known as CD95, or its binding component, CD95 ligand.

"The discovery seems counterintuitive because CD95 has previously been defined as a tumor suppressor," said lead investigator Marcus Peter, professor in medicine-hematology/Oncology at Northwestern University Feinberg School of Medicine. "But when we removed it from , rather than proliferate, they died."

The findings were published March 20 in Cell Reports.

The self-destruction of cells, known as apoptosis, is a necessary process that helps the body rid itself of unwanted and potentially harmful cells. Under normal circumstances, when CD95 is activated, the process of apoptosis is triggered. Seen as a keeper of homeostasis in the immune system, it's been long-considered vital for the prevention of uncontrolled, .

"In order to conduct this line of work, we had to create something that I don't believe exists, a cancer cell completely devoid of CD95," said Peter, a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. "If CD95 was truly a , its elimination would result in an enhanced growth and/or invasiveness of cancer cells."

Peter and his team tested cancer cells from nine different tissue origins. Instead of proliferating, the cells increased their size and the production of harmful reactive oxygen species, resulting in DNA damage. In their first attempt to divide, they died.

Peter determined that the "cell death induced by CD95 receptor or ligand elimination (DICE)," comprises multiple death pathways. A cancer cell would have to mutate components of each to defend against DICE, a highly unlikely scenario.

"DICE killed every cancer cell we put it up against and we found nothing that could prevent its destruction," Peter said. "The fact that none of the more than 1,000 drugs, nor the knockdown of any single gene was found to counteract DICE, makes it a very promising new way to kill cancer cells."

To confirm the importance of CD95 for the survival of cancer cells in vivo, Peter and colleagues removed it from tissues in animal models and found that cancer could not form.

"We know CD95 is not essential for the survival of any tissue outside of the immune system because mice with a deletion of either CD95 or CD95 ligand complete an average lifecycle with no illness other than autoimmunity," he said.

The findings suggest that dependence on CD95 and CD95 ligand for survival is a feature of cancer cells that distinguishes them from .

"We didn't believe these findings at first, but after more than four years of detailed experiments, we have convinced ourselves and others that what we have shown reflects reality," Peter said.

Peter is now working with Chad Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine at Feinberg, to induce DICE in cancer cells using small interfering RNAs delivered by gold nanoparticles.

"We're not going to reinvent the wheel," Peter said. "Alexander Stegh, assistant professor of neurology and of medicine at Feinberg, has already used the same nano-platform to target a gene in a mouse model for brain cancer. In developing nano-DICE, we can begin the process of finding new treatment options."

Explore further: Scientists find genetic key to why some cancer patients don't respond to treatment

Related Stories

Scientists find genetic key to why some cancer patients don't respond to treatment

January 5, 2012
(Medical Xpress) -- Researchers from Newcastle University have identified a gene variation carried by 20% of the population which can significantly affect how patients with a rare type of blood cancer will respond to treatment.

Trial combining anti-cancer drug and radiotherapy may lead to treatment for brain tumor

September 30, 2013
Results from a clinical trial of a new treatment for glioblastoma suggest that researchers may have found a new approach to treating this most aggressive of brain tumours, as well as a potential new biological marker than ...

New study shows promise for preventing therapy resistance in tumor cells

January 9, 2014
A new study led by University of Kentucky researchers suggests that activating the tumor suppressor p53 in normal cells causes them to secrete Par-4, another potent tumor suppressor protein that induces cell death in cancer ...

Team discovers new mechanism allowing tumor cells to escape immune surve

March 18, 2014
The immune system plays a pivotal role in targeting cancer cells for destruction. However, tumor cells are smart and have developed ways to avoid immune detection. A collaborative team of researchers at Moffitt Cancer Center ...

Recommended for you

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.