Surprising new way to kill cancer cells

March 21, 2014

Northwestern Medicine scientists have demonstrated that cancer cells – and not normal cells – can be killed by eliminating either the FAS receptor, also known as CD95, or its binding component, CD95 ligand.

"The discovery seems counterintuitive because CD95 has previously been defined as a tumor suppressor," said lead investigator Marcus Peter, professor in medicine-hematology/Oncology at Northwestern University Feinberg School of Medicine. "But when we removed it from , rather than proliferate, they died."

The findings were published March 20 in Cell Reports.

The self-destruction of cells, known as apoptosis, is a necessary process that helps the body rid itself of unwanted and potentially harmful cells. Under normal circumstances, when CD95 is activated, the process of apoptosis is triggered. Seen as a keeper of homeostasis in the immune system, it's been long-considered vital for the prevention of uncontrolled, .

"In order to conduct this line of work, we had to create something that I don't believe exists, a cancer cell completely devoid of CD95," said Peter, a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. "If CD95 was truly a , its elimination would result in an enhanced growth and/or invasiveness of cancer cells."

Peter and his team tested cancer cells from nine different tissue origins. Instead of proliferating, the cells increased their size and the production of harmful reactive oxygen species, resulting in DNA damage. In their first attempt to divide, they died.

Peter determined that the "cell death induced by CD95 receptor or ligand elimination (DICE)," comprises multiple death pathways. A cancer cell would have to mutate components of each to defend against DICE, a highly unlikely scenario.

"DICE killed every cancer cell we put it up against and we found nothing that could prevent its destruction," Peter said. "The fact that none of the more than 1,000 drugs, nor the knockdown of any single gene was found to counteract DICE, makes it a very promising new way to kill cancer cells."

To confirm the importance of CD95 for the survival of cancer cells in vivo, Peter and colleagues removed it from tissues in animal models and found that cancer could not form.

"We know CD95 is not essential for the survival of any tissue outside of the immune system because mice with a deletion of either CD95 or CD95 ligand complete an average lifecycle with no illness other than autoimmunity," he said.

The findings suggest that dependence on CD95 and CD95 ligand for survival is a feature of cancer cells that distinguishes them from .

"We didn't believe these findings at first, but after more than four years of detailed experiments, we have convinced ourselves and others that what we have shown reflects reality," Peter said.

Peter is now working with Chad Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine at Feinberg, to induce DICE in cancer cells using small interfering RNAs delivered by gold nanoparticles.

"We're not going to reinvent the wheel," Peter said. "Alexander Stegh, assistant professor of neurology and of medicine at Feinberg, has already used the same nano-platform to target a gene in a mouse model for brain cancer. In developing nano-DICE, we can begin the process of finding new treatment options."

Explore further: Scientists find genetic key to why some cancer patients don't respond to treatment

Related Stories

Scientists find genetic key to why some cancer patients don't respond to treatment

January 5, 2012
(Medical Xpress) -- Researchers from Newcastle University have identified a gene variation carried by 20% of the population which can significantly affect how patients with a rare type of blood cancer will respond to treatment.

Trial combining anti-cancer drug and radiotherapy may lead to treatment for brain tumor

September 30, 2013
Results from a clinical trial of a new treatment for glioblastoma suggest that researchers may have found a new approach to treating this most aggressive of brain tumours, as well as a potential new biological marker than ...

New study shows promise for preventing therapy resistance in tumor cells

January 9, 2014
A new study led by University of Kentucky researchers suggests that activating the tumor suppressor p53 in normal cells causes them to secrete Par-4, another potent tumor suppressor protein that induces cell death in cancer ...

Team discovers new mechanism allowing tumor cells to escape immune surve

March 18, 2014
The immune system plays a pivotal role in targeting cancer cells for destruction. However, tumor cells are smart and have developed ways to avoid immune detection. A collaborative team of researchers at Moffitt Cancer Center ...

Recommended for you

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.