Study finds CT scans predict chemotherapy response in pancreatic cancer

March 11, 2014

Computed tomography (CT) scans routinely taken to guide the treatment of pancreatic cancer may provide an important secondary benefit. According to new research from The University of Texas MD Anderson Cancer Center, the scans also reflect how well chemotherapy will penetrate the tumor, predicting the effectiveness of treatment.

The research, published in the Journal of Clinical Investigation, is the first human study to address the issue of chemotherapy delivery to pancreatic tumors, a problem previously shown in animal studies.

"We found that the distribution of intravenous dye used in CT scans is a surrogate for chemotherapy delivery in the tumor," said Jason Fleming, M.D., professor in Surgical Oncology and corresponding author of the study. "Our results indicate that combining data from routine CT scans and using a mathematical formula developed by our team can predict response, guide patient treatment and lead to efforts to improve ."

Pancreatic tumors contain disorganized or nonfunctional blood vessels, high proportions of fibrotic tissue and molecular variations that create barriers for a to reach its target. It's a disease with a poor prognosis and the American Cancer Society estimates more than 39,000 people will die in 2014 as a result.

"Chemotherapy is used every day, however we've done very little to demonstrate that the drug actually reaches the tumor efficiently," Fleming said. "Results from our previous clinical trials at MD Anderson taught us that when chemotherapy kills most of a patient's tumor, the patient has a better chance of being a long-term survivor."

Researchers first enrolled 12 patients with primary pancreatic disease who would undergo a surgical resection. During surgery, each patient received an infusion of the chemotherapy drug gemcitabine. After surgery, the tumor DNA was analyzed for penetration of gemcitabine.

Gemcitabine is delivered to tumor DNA primarily through a protein called the human equilibrative nucleoside transporter (hENT1). Previous studies have shown its expression varies in , linking the protein to drug response.

For patients in the study with dense, fibrotic tumors and not much hENT1 protein, the chemotherapy was delivered constantly but its uptake was minimal since the drug was not reaching cancer cells, Fleming said.

Researchers found gemcitabine penetrated tumors at varying levels in the group of 12 patients and those with greater gemcitabine levels responded better to therapy and had improved outcomes. After seeing this difference, the team examined past CT scans from another group of patients to compare how the drug reached tumor cells.

The research team analyzed scans from 176 patients (12 who received gemcitabine infusion during surgery, 110 who received presurgical gemcitabine-based chemoradiation and 55 who received upfront surgery to remove the tumor).

Results show striking differences

After reviewing the data, researchers noticed visual differences in tumors as a result of the CT contrast being absorbed differently. Based on these observations, Fleming and his colleagues began to question whether the intravenous contrast used for CT scans predicted the path and absorption of gemcitabine . It turned out this theory was true.

By employing models to measure factors that influence drug delivery, researchers found resected tumors showed up to 6-fold differences in gemcitabine incorporation.

"This work is showing that are much more heterogeneous than we thought with respect to drug delivery," Fleming said. "Going forward the implication is that molecular information from a biopsy of the tumor can be combined with data from a standard CT scan to place patients into categories that predict their response to therapy."

Additionally, Fleming said the trial implications are broad and could apply to other solid tumors. Researchers are beginning to look at existing drugs, such as losartan, a drug for high blood-pressure, as it could change the makeup of dense tumors, allowing better delivery of for patients who otherwise would have a poor response.

"The nice thing is that we can measure the effect of these new and repurposed drugs by using intravenous contrast in CT scans as a surrogate, so we don't have to commit a patient to receive a cancer drug until we know it improves the characteristics," he added.

Future research is required to standardize this method of matching ' tumors to the most promising drugs.

Explore further: Antibody-drug conjugate may provide new treatment option for pancreatic cancer patients

Related Stories

Antibody-drug conjugate may provide new treatment option for pancreatic cancer patients

October 21, 2013
Patients with pancreatic cancer may benefit from an investigational member of an emerging class of anticancer drugs called antibody-drug conjugates, according to preclinical results presented here at the AACR-NCI-EORTC International ...

Clinical trial looks to improve pancreatic cancer survival rates

February 12, 2013
Researchers at Georgia Regents University Cancer Center are investigating a new avenue of treatment to help boost poor pancreatic cancer survival rates.

Chemotherapy drug improves survival following surgery for pancreatic cancer

October 8, 2013
Among patients with pancreatic cancer who had surgery for removal of the cancer, treatment with the drug gemcitabine for 6 months resulted in increased overall survival as well as disease-free survival, compared with observation ...

Improved ultrasound imaging provides alternate way to visualize tumors

January 29, 2014
While ultrasound provides a less expensive and radiation-free alternative to detecting and monitoring cancer compared to technologies such as X-rays, CT scans, and MRIs, ultrasound has seen limited use in cancer treatment ...

Researchers harness immune system to fight pancreatic cancer

September 24, 2013
(Medical Xpress)—Pancreatic cancer ranks as the fourth-leading cause of cancer death in the United States, and is one of the most deadly forms of cancer, due to its resistance to standard treatments with chemotherapy and ...

Blood-pressure drug may help improve cancer treatment

October 1, 2013
Use of existing, well-established hypertension drugs could improve the outcome of cancer chemotherapy by opening up collapsed blood vessels in solid tumors. In their report in the online journal Nature Communications, Massachusetts ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.