Discovery to help predict who will benefit from lung cancer treatment

March 25, 2014, Cancer Research UK
This shows the atomic surface of the EML1 protein. The structure is made of four parts that are coloured blue, green, orange and pink. These four parts come together to make the souped up protein.

Cancer Research UK scientists have discovered the structure of an abnormal protein which causes an aggressive type of lung cancer, according to new research* published in the Proceedings of the National Academy of Science on Monday.

Unveiling the structure of this – formed by a genetic fault – could enable doctors to predict who will benefit from a specific treatment, while saving other from receiving it unnecessarily.

Researchers were looking at a form of the disease – known as ALK lung cancers – which account for around four per cent of cases.

These lung cancers have a fault where two different genes become locked together. This gene fusion forms a souped-up version of a protein which then becomes an engine, driving the cancer to grow very fast and spread rapidly.

But, importantly these cancers rely on this engine to survive so blocking the protein could kill the lung cancer.

Using x-ray crystallography, the researchers were able to develop a clear picture of the shape of one half of the souped-up protein. The shape of the other half was already known. This revealed several different shapes depending on where the genes had fused.

Crucially, some of the shapes are unstable and need help from another protein to work. This assistant protein can be blocked by drugs known as Hsp90 inhibitors. By stopping this helper protein, the unstable, souped-up proteins can no longer work and the cancer cells die.

But for around one third of patients with ALK lung cancer, the structure of the protein uncovered by the researchers is much more stable and is resistant to the Hsp90 inhibitors.

Following on from their discovery, the researchers grew cells in the lab to test their theory. As predicted, the cells with the unstable protein were killed by the drug, and the cells with the stable form of the protein continued to grow.

The researchers are currently collecting data and samples from a clinical trial to find out if their lab findings hold true and can be used to predict which lung cancer patients will respond to the drug.

Dr Richard Bayliss, co-author based at the University of Leicester and the Cancer Research UK Leicester Centre, said: "We routinely use protein structures during the process of drug design, but this is the first time they have helped us to predict patient response to drugs in clinical development. The other unique aspect of this project has been the bringing together of teams who hadn't previously worked together. We had structural biologists working alongside clinical researchers who help treat patients. Our results would not have been possible without the clinical oncology expertise of Professor Dean Fennell and his team. We're now looking for groups of patients who might benefit from Hsp90 inhibitors because they harbour other 'souped-up' proteins with unstable shapes."

Dr Emma Smith, Cancer Research UK's senior science information officer, said: "This study is a positive step forward in making sure get the most effective treatment based on the genetic mistakes that underpin their disease. We now need to build on this research and gather further clinical data to confirm these findings. It may lead to doctors developing a simple genetic test to spot patients who will benefit from a drug targeted against their disease, and spare patients unlikely to benefit unnecessary side effects.

"Lung cancer has been a difficult disease to overcome. Unravelling the mystery of its complex biology, and developing better and kinder treatments is taking time but this research provides yet more hope that we're moving in the right direction."

Explore further: Ganetespib shows potency against ALK-positive lung cancer and overcomes crizotinib resistance

More information: Mark W. Richards, Edward W. P. Law, La'Verne P. Rennalls, Sara Busacca, Laura O'Regan, Andrew M. Fry, Dean A. Fennell, and Richard Bayliss. "Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain." PNAS 2014 ; published ahead of print March 24, 2014, DOI: 10.1073/pnas.1322892111

Related Stories

Ganetespib shows potency against ALK-positive lung cancer and overcomes crizotinib resistance

March 26, 2013
A drug that indirectly impairs the function of several cancer-driving proteins, including anaplastic lymphoma kinase (ALK), may be an effective new treatment for patients with ALK—positive non-small cell lung cancer.

Blocking 'lock and key' site of lung cancer proteins could lead to new treatments

November 12, 2013
A Cancer Research UK study reveals that stopping two essential lung cancer proteins from joining together at their 'lock and key' site could lead to new treatments for the disease. The research is published in the journal ...

New drug extends advanced lung cancer survival

June 3, 2013
A new drug can help advanced lung cancer patients live longer and may aid in treating other kinds of cancer, researchers said Monday.

Experimental drugs for breast cancer could treat lung cancer too

August 13, 2013
Cancer Research UK -funded scientists have discovered that experimental drugs first developed for breast and ovarian cancer could be used to treat the most common type of lung cancer, reveals research published in Oncogene ...

Scientists discover new protein involved in lung cancer

February 27, 2014
Scientists from The University of Manchester – part of the Manchester Cancer Research Centre (MCRC) - have discovered a new protein that is involved in cancer and inflammation in lung tissue.

Recurrent but rare mutations might underlie cancer growth

February 26, 2014
A potential new gene mutation that might drive lung cancer development and growth has been identified by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard ...

Recommended for you

First immunotherapy success for triple-negative breast cancer

October 21, 2018
There is new hope for people with an aggressive type of breast cancer, as an immunotherapy trial shows for the first time that lives can be extended in people with triple-negative breast cancer.

Healthy diets linked to better outcomes in colorectal cancer

October 20, 2018
Colorectal cancer patients who followed healthy diets had a lower risk of death from colorectal cancer and all causes, even those who improved their diets after being diagnosed, according to a new American Cancer Society ...

Why some cancers affect only young women

October 19, 2018
Among several forms of pancreatic cancer, one of them specifically affects women, often young. How is this possible, even though the pancreas is an organ with little exposure to sex hormones? This pancreatic cancer, known ...

Scientists to improve cancer treatment effectiveness

October 19, 2018
Together with researchers from the University of Nantes and the University of Reims Champagne-Ardenne in France, experts from the National Research Nuclear University MEPhI have recently developed a quantum dot-based microarray ...

Mutant cells colonize our tissues over our lifetime

October 18, 2018
By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.