Huntington's disease: Study discovers potassium boost improves walking in mouse model

March 30, 2014
Brain tissue from a mouse shows star-shaped astrocytes (green). Cells (blue) containing a mutant protein (white) display lower levels of a potassium-regulating protein (red). Credit: University of California Los Angeles

Tweaking a specific cell type's ability to absorb potassium in the brain improved walking and prolonged survival in a mouse model of Huntington's disease, reports a UCLA study published March 30 in the online edition of Nature Neuroscience. The discovery could point to new drug targets for treating the devastating disease, which strikes one in every 20,000 Americans.

Huntington's disease is passed from parent to child through a mutation in the huntingtin gene. By killing brain cells called , the progressive disorder gradually deprives patients of their ability to walk, speak, swallow, breathe and think clearly. No cure exists, and patients with aggressive cases can die in as little as 10 years.

The laboratories of Baljit Khakh, a professor of physiology and neurobiology, and Michael Sofroniew, a professor of neurobiology, teamed up at the David Geffen School of Medicine at UCLA to unravel the role played in Huntington's by astrocytes—large, star-shaped cells found in the brain and spinal cord.

"Astrocytes appear in the brain in equal numbers to neurons, yet haven't been closely studied. They enable neurons to signal each other by maintaining an optimal chemical environment outside the cells," explained Khakh, who, with Sofroniew, is a member of the UCLA Brain Research Institute. "We used two mouse models to explore whether astrocytes behave differently during Huntington's disease."

The first model mimicked aggressive, early-onset of the disorder, while the second imitated a slow-developing version.

Khakh and Sofroniew examined how the huntingtin mutation influenced astrocytes in the brain. In particular, they looked at astrocytes' interaction with a type of neuron that plays a central role in coordinating movement.

One key finding stood out from the data.

In both models, astrocytes with the mutant gene showed a measurable drop in Kir4.1, a protein that allows the astrocyte to take in potassium through the cell membrane. This left too much potassium outside the cell, disrupting the chemical balance and increasing the nearby neurons' excitability–or capacity to fire.

"We suspect that the gene mutation contributes to Huntington's disease by reducing Kir4.1 levels in the astrocytes," said Sofroniew. "This, in turn, reduces the cell's uptake of potassium.

"When excess potassium pools around neurons, they grow oversensitive and fire too easily, disrupting nerve-cell function and ultimately the body's ability to move properly. This may contribute to the jerky motions common to Huntington's disease," he added.

To test their hypothesis, the scientists explored what would happen if they artificially increased Kir4.1 levels inside the astrocytes. In one example, the results proved striking.

"Boosting Kir4.1 in the astrocytes improved the mice's ability to walk properly. We were surprised to see the length and width of the mouse's stride return to more normal levels," said Khakh. "This was an unexpected discovery."

"Our work breaks new ground by showing that disrupting astrocyte function leads to the disruption of neuron function in a of Huntington's disease," said Sofroniew. "Our findings suggest that therapeutic targets exist for the disorder beyond neurons."

While the results shed important light on one of the mechanisms behind Huntington's disease, the findings also offer more general implications, according to the authors

"We're really excited that can potentially be exploited for new drug treatments," said Khakh. "Astrocyte dysfunction also may be involved in other neurological diseases beyond Huntington's."

The UCLA team's next step will be to tease out the mechanism that reduces Kir4.1 levels and illuminate how this alters neuronal networks.

Explore further: Study identifies key player in motor neuron death in Lou Gehrig's disease

More information: Paper: dx.doi.org/10.1038/nn.3691

Related Stories

Study identifies key player in motor neuron death in Lou Gehrig's disease

March 26, 2014
Amyotrophic lateral sclerosis, also known as Lou Gehrig's disease, is marked by a cascade of cellular and inflammatory events that weakens and kills vital motor neurons in the brain and spinal cord. The process is complex, ...

Toxin from brain cells triggers neuron loss in human ALS model

February 6, 2014
In most cases of amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, a toxin released by cells that normally nurture neurons in the brain and spinal cord can trigger loss of the nerve cells affected in the disease, ...

New methods to explore astrocyte effects on brain function

April 29, 2013
A study in The Journal of General Physiology presents new methods to evaluate how astrocytes contribute to brain function, paving the way for future exploration of these important brain cells at unprecedented levels of detail.

Rare disease yields clues about broader brain pathology

November 21, 2013
(Medical Xpress)—Alexander disease is a devastating brain disease that almost nobody has heard of—unless someone in the family is afflicted with it. Alexander disease strikes young or old, and in children destroys white ...

Drug reduces brain changes, motor deficits associated with Huntington's disease

November 26, 2013
A drug that acts like a growth-promoting protein in the brain reduces degeneration and motor deficits associated with Huntington's disease in two mouse models of the disorder, according to a study appearing November 27 in ...

New therapeutic target identified for Huntington's disease

November 26, 2013
A new study published 26th November in the open access journal PLOS Biology, identifies a new target in the search for therapeutic interventions for Huntington's disease – a devastating late-onset neurodegenerative disorder.

Recommended for you

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.