Researchers find a lobster's sense of smell may hold the key to better electronic sensors

March 18, 2014 by Melissa Lutz Blouin
European lobster (Hommarus gammarus). Credit: Bart Braun, public domain

(Medical Xpress)—Could lobsters help protect soldiers someday? A team of University of Florida researchers says they might.

Don't expect to see battlefields filled with spiny crustaceans on leashes, though. The secret lies in how the clawed creatures locate a specific scent. UF Health researchers and engineers say they have identified the neurons involved in that ability—call it "lobster radar"—and that discovery may help them develop improved electronic "noses" to detect landmines and other explosives. For many years, scientists have worked to create sensors that can detect everything from contamination in food products to harmful bacteria, as well as land mines and explosives. And because of the dangerous nature of hazardous material detection, scientists are constantly looking for ways to improve those devices.

"An electronic nose has to recognize an odor and locate its source. Finding the source has often been the job of the person handling the electronic nose," said Barry W. Ache, distinguished professor of neuroscience and biology and director of the Center for Smell and Taste in UF's Evelyn F. and William L. McKnight Brain Institute. To date, the technology has had its drawbacks—especially when the nose is used to detect potentially deadly materials that could endanger its human handler.

Yuriy V. Bobkov, of the UF Whitney Laboratory for Marine Bioscience, originally discovered a type of olfactory neuron in lobsters that constantly discharges small bursts of electrical pulses, much like radar uses pulses of radio energy to detect airplanes or thunderstorms. UF researchers speculated that these so-called "bursting" neurons might cue the crustaceans in on an odor's location—especially important when they are searching for food or trying to avoid danger.

"Animals need to recognize a smell, but also determine where it is coming from," Ache said.

Odors exist as compounds that move through the air or water and settle on olfactory neurons in "whiffs." The time between whiffs depends on the distance between the smeller and the source of the smell. Sensing the time intervals allows animals to determine the location of an odor. That's where bursting olfactory neurons from lobsters come in.

To try to solve the mystery of how lobsters process sensory information, Jose C. Principe and Il Memming Park, of the Computational NeuroEngineering Laboratory in UF's department of electrical and computer engineering, took information gleaned from these cells and created a computational model based on the range of such cells found in the olfactory organ.

Each bursting cell responds to a whiff at a different frequency, Ache said. Together, the neurons help pinpoint the location of a particular odor. Just as a person can hear a train moving from left to right, a lobster's set of set the scene for the location of a smell.

By entering the lobster olfactory data into a computer model and giving artificial silicon neurons the same features found in the crustacean ones, then subjecting the neurons to simulated whiffs of odor, the researchers could determine how the bursting neurons function and how they set a scene that tells the animal the source of a smell.

"These cells as a population seem to provide a system for detecting odors in the spatial world," Ache said. "We hope not only to learn more about how these systems work, but how that information might be applied to challenges such as ."

In addition to improving electronic sensors, this finding will help scientists better understand the sense of smell in all animals—including humans.

"The involvement of bursting in olfactory processing is not unique to the lobster," Bobkov said. "It's likely to be a fundamental aspect of olfaction."

The team reported the findings in the January issue of the Journal of Neuroscience.

Explore further: Research reveals first glimpse of brain circuit that helps experience to shape perception

Related Stories

Research reveals first glimpse of brain circuit that helps experience to shape perception

March 2, 2014
Odors have a way of connecting us with moments buried deep in our past. Maybe it is a whiff of your grandmother's perfume that transports you back decades. With that single breath, you are suddenly in her living room, listening ...

A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

October 4, 2013
Information about odorant molecules in the environment helps animals to find food, select mates and avoid predators. Yoshihiro Yoshihara and colleagues from the RIKEN Brain Science Institute have now identified a protein ...

Sniffing out danger: Scientists say fearful memories can trigger heightened sense of smell

December 12, 2013
Most people – including scientists – assumed we can't just sniff out danger.

Researcher finds elderly lose ability to distinguish between odors

November 10, 2011
Scientists studying how the sense of smell changes as people age, found that olfactory sensory neurons in those 60 and over showed an unexpected response to odor that made it more difficult to distinguish specific smells, ...

Developing our sense of smell: Biologists pinpoint the origin of olfactory nerve cells

March 25, 2013
When our noses pick up a scent, whether the aroma of a sweet rose or the sweat of a stranger at the gym, two types of sensory neurons are at work in sensing that odor or pheromone. These sensory neurons are particularly interesting ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.