Researchers find a lobster's sense of smell may hold the key to better electronic sensors

March 18, 2014 by Melissa Lutz Blouin, University of Florida
European lobster (Hommarus gammarus). Credit: Bart Braun, public domain

(Medical Xpress)—Could lobsters help protect soldiers someday? A team of University of Florida researchers says they might.

Don't expect to see battlefields filled with spiny crustaceans on leashes, though. The secret lies in how the clawed creatures locate a specific scent. UF Health researchers and engineers say they have identified the neurons involved in that ability—call it "lobster radar"—and that discovery may help them develop improved electronic "noses" to detect landmines and other explosives. For many years, scientists have worked to create sensors that can detect everything from contamination in food products to harmful bacteria, as well as land mines and explosives. And because of the dangerous nature of hazardous material detection, scientists are constantly looking for ways to improve those devices.

"An electronic nose has to recognize an odor and locate its source. Finding the source has often been the job of the person handling the electronic nose," said Barry W. Ache, distinguished professor of neuroscience and biology and director of the Center for Smell and Taste in UF's Evelyn F. and William L. McKnight Brain Institute. To date, the technology has had its drawbacks—especially when the nose is used to detect potentially deadly materials that could endanger its human handler.

Yuriy V. Bobkov, of the UF Whitney Laboratory for Marine Bioscience, originally discovered a type of olfactory neuron in lobsters that constantly discharges small bursts of electrical pulses, much like radar uses pulses of radio energy to detect airplanes or thunderstorms. UF researchers speculated that these so-called "bursting" neurons might cue the crustaceans in on an odor's location—especially important when they are searching for food or trying to avoid danger.

"Animals need to recognize a smell, but also determine where it is coming from," Ache said.

Odors exist as compounds that move through the air or water and settle on olfactory neurons in "whiffs." The time between whiffs depends on the distance between the smeller and the source of the smell. Sensing the time intervals allows animals to determine the location of an odor. That's where bursting olfactory neurons from lobsters come in.

To try to solve the mystery of how lobsters process sensory information, Jose C. Principe and Il Memming Park, of the Computational NeuroEngineering Laboratory in UF's department of electrical and computer engineering, took information gleaned from these cells and created a computational model based on the range of such cells found in the olfactory organ.

Each bursting cell responds to a whiff at a different frequency, Ache said. Together, the neurons help pinpoint the location of a particular odor. Just as a person can hear a train moving from left to right, a lobster's set of set the scene for the location of a smell.

By entering the lobster olfactory data into a computer model and giving artificial silicon neurons the same features found in the crustacean ones, then subjecting the neurons to simulated whiffs of odor, the researchers could determine how the bursting neurons function and how they set a scene that tells the animal the source of a smell.

"These cells as a population seem to provide a system for detecting odors in the spatial world," Ache said. "We hope not only to learn more about how these systems work, but how that information might be applied to challenges such as ."

In addition to improving electronic sensors, this finding will help scientists better understand the sense of smell in all animals—including humans.

"The involvement of bursting in olfactory processing is not unique to the lobster," Bobkov said. "It's likely to be a fundamental aspect of olfaction."

The team reported the findings in the January issue of the Journal of Neuroscience.

Explore further: Research reveals first glimpse of brain circuit that helps experience to shape perception

Related Stories

Research reveals first glimpse of brain circuit that helps experience to shape perception

March 2, 2014
Odors have a way of connecting us with moments buried deep in our past. Maybe it is a whiff of your grandmother's perfume that transports you back decades. With that single breath, you are suddenly in her living room, listening ...

A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

October 4, 2013
Information about odorant molecules in the environment helps animals to find food, select mates and avoid predators. Yoshihiro Yoshihara and colleagues from the RIKEN Brain Science Institute have now identified a protein ...

Sniffing out danger: Scientists say fearful memories can trigger heightened sense of smell

December 12, 2013
Most people – including scientists – assumed we can't just sniff out danger.

Researcher finds elderly lose ability to distinguish between odors

November 10, 2011
Scientists studying how the sense of smell changes as people age, found that olfactory sensory neurons in those 60 and over showed an unexpected response to odor that made it more difficult to distinguish specific smells, ...

Developing our sense of smell: Biologists pinpoint the origin of olfactory nerve cells

March 25, 2013
When our noses pick up a scent, whether the aroma of a sweet rose or the sweat of a stranger at the gym, two types of sensory neurons are at work in sensing that odor or pheromone. These sensory neurons are particularly interesting ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.