Researchers show how lost sleep leads to lost neurons

March 18, 2014, University of Pennsylvania School of Medicine
This is a group of neurons. Credit: EPFL/Human Brain Project

Most people appreciate that not getting enough sleep impairs cognitive performance. For the chronically sleep-deprived such as shift workers, students, or truckers, a common strategy is simply to catch up on missed slumber on the weekends. According to common wisdom, catch up sleep repays one's "sleep debt," with no lasting effects. But a new Penn Medicine study shows disturbing evidence that chronic sleep loss may be more serious than previously thought and may even lead to irreversible physical damage to and loss of brain cells. The research is published today in The Journal of Neuroscience.

Using a mouse model of chronic , Sigrid Veasey, MD, associate professor of Medicine and a member of the Center for Sleep and Circadian Neurobiology at the Perelman School of Medicine and collaborators from Peking University, have determined that extended wakefulness is linked to injury to, and loss of, that are essential for alertness and optimal cognition, the locus coeruleus (LC) neurons.

"In general, we've always assumed full recovery of cognition following short- and long-term sleep loss," Veasey says. "But some of the research in humans has shown that attention span and several other aspects of cognition may not normalize even with three days of recovery sleep, raising the question of lasting injury in the brain. We wanted to figure out exactly whether chronic sleep loss injures neurons, whether the injury is reversible, and which neurons are involved."

Mice were examined following periods of normal rest, short wakefulness, or extended wakefulness, modeling a shift worker's typical sleep pattern. The Veasey lab found that in response to short-term sleep loss, LC neurons upregulate the sirtuin type 3 (SirT3) protein, which is important for mitochondrial energy production and redox responses, and protect the neurons from metabolic injury. SirT3 is essential across short-term sleep loss to maintain metabolic homeostasis, but in extended wakefulness, the SirT3 response is missing. After several days of shift worker sleep patterns, LC neurons in the mice began to display reduced SirT3, increased cell death, and the mice lost 25 percent of these neurons.

"This is the first report that sleep loss can actually result in a loss of neurons," Veasey notes. Particularly intriguing is, that the findings suggest that mitochondria in LC neurons respond to sleep loss and can adapt to short-term sleep loss but not to extended wake. This raises the possibility that somehow increasing SirT3 levels in the mitochondria may help rescue neurons or protect them across chronic or extended sleep loss. The study also demonstrates the importance of sleep for restoring metabolic homeostasis in mitochondria in the LC neurons and possibly other important brain areas, to ensure their optimal functioning during waking hours.

Veasey stresses that more work needs to be done to establish whether a similar phenomenon occurs in humans and to determine what durations of wakefulness place individuals at risk of neural injury. "In light of the role for SirT3 in the adaptive response to sleep loss, the extent of neuronal injury may vary across individuals. Specifically, aging, diabetes, high-fat diet and sedentary lifestyle may all reduce SirT3. If cells in individuals, including neurons, have reduced SirT3 prior to sleep loss, these individuals may be set up for greater risk of injury to their nerve cells."

The next step will be putting the SirT3 model to the test. "We can now overexpress SirT3 in LC neurons," explains Veasey. "If we can show that we can protect the cells and wakefulness, then we're launched in the direction of a promising therapeutic target for millions of shift workers."

The team also plans to examine post-mortem for evidence of increased LC neuron loss and signs of neurodegenerative disorders such as Alzheimer's and Parkinson's, since some previous mouse models have shown that lesions or injury to LC neurons can accelerate the course of those diseases. While not directly causing theses diseases, "injuring LC neurons due to sleep loss could potentially facilitate or accelerate neurodegeneration in individuals who already have these disorders," Veasey says.

While more research will be needed to settle these questions, the present study provides another confirmation of a rapidly growing scientific consensus: sleep is more important than was previously believed. In the past, Veasey observes, "No one really thought that the brain could be irreversibly injured from sleep loss." It's now clear that it can be.

Explore further: Study in fruitflies strengthens connection among protein misfolding, sleep loss, and age

Related Stories

Study in fruitflies strengthens connection among protein misfolding, sleep loss, and age

February 20, 2014
Pulling an "all-nighter" before a big test is practically a rite of passage in college. Usually, it's no problem: You stay up all night, take the test, and then crash, rapidly catching up on lost sleep. But as we age, sleep ...

Sleep to protect your brain

December 31, 2013
A new study from Uppsala University, Sweden, shows that one night of sleep deprivation increases morning blood concentrations of NSE and S-100B in healthy young men. These molecules are typically found in the brain. Thus, ...

Scientists identify the switch that says it's time to sleep

February 19, 2014
The switch in the brain that sends us off to sleep has been identified by researchers at Oxford University's Centre for Neural Circuits and Behaviour in a study in fruit flies.

Narcolepsy study finds surprising increase in neurons that produce histamine

June 3, 2013
A new study provides surprising evidence that people with narcolepsy have an increased number of neurons that produce histamine, suggesting that histamine signaling may be a novel therapeutic target for this potentially disabling ...

New fruitfly sleep gene promotes the need to sleep

February 4, 2014
All creatures great and small, including fruitflies, need sleep. Researchers have surmised that sleep – in any species—is necessary for repairing proteins, consolidating memories, and removing wastes from cells. But, ...

Dietary amino acids relieve sleep problems after traumatic brain injury in animals

December 11, 2013
Scientists who fed a cocktail of key amino acids to mice improved sleep disturbances caused by brain injuries in the animals. These new findings suggest a potential dietary treatment for millions of people affected by traumatic ...

Recommended for you

Neuroscience of envy: Activated brain region when others are rewarded revealed

September 19, 2018
How we feel about our own material wellbeing and status in society is largely determined by our evaluation of others. However, the neurological underpinnings of how we monitor the complex social environments under conditions ...

Use of electrical brain stimulation to foster creativity has sweeping implications

September 18, 2018
What is creativity, and can it be enhanced—safely—in a person who needs a boost of imagination? Georgetown experts debate the growing use of electrical devices that stimulate brain tissue, and conclude there is potential ...

Engineers decode conversations in brain's motor cortex

September 18, 2018
How does your brain talk with your arm? The body doesn't use English, or any other spoken language. Biomedical engineers are developing methods for decoding the conversation, by analyzing electrical patterns in the motor ...

Team identifies brain's lymphatic vessels as new avenue to treat multiple sclerosis

September 17, 2018
Lymphatic vessels that clean the brain of harmful material play a crucial role in the development and progression of multiple sclerosis, new research from the University of Virginia School of Medicine suggests. The vessels ...

Resynchronizing neurons to erase schizophrenia

September 17, 2018
Schizophrenia, an often severe and disabling psychiatric disorder, affects approximately 1 percent of the world's population. While research over the past few years has suggested that desynchronization of neurons may be the ...

Circuit found for brain's statistical inference about motion

September 17, 2018
As the eye tracks a bird flying past, the muscles that pan the eyeballs to keep the target in focus set their pace not only on the speed they see, but also on a reasonable estimate of the speed they expect from having watched ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.