An inventive new way to profile immune cells in blood

March 5, 2014
A new technique based on microarrayss distinguishes cell types in blood by looking at signature degrees of methylation in DNA. Yellow represents no methylation, and blue represents full methylation. Credit: Kelsey Lab/Brown University

When a person becomes sick or is exposed to an unwelcome substance, the body mobilizes specific proportions of different immune cells in the blood. Methods of discovering and detecting those profiles are therefore useful both clinically and in research. In a new paper in the journal Genome Biology, a team of scientists describes a new and uniquely advantageous way to detect them.

All the current means of counting immune cells in a require whole cells, said Karl Kelsey, professor of epidemiology at Brown and corresponding author, but the new system relies on something far less ephemeral: DNA. Its use of hardy strands of genetic material allows it to handle even archived samples where cells have lost their physical integrity.

All of a person's immune cells—in fact, nearly all of their cells—have exactly the same DNA, but what makes a kidney cell different from a brain cell or a T-cell distinct from a B-cell are chemical alterations known as epigenetic marks. Those cause a cell's genes to be expressed in the particular way that makes them different. One type of those alterations is methylation, and every kind of cell has its own methylation signature.

"Once you understand the unique and really immutable signature that directs the differentiation of the cell, then you can use that and you don't need the cell anymore," Kelsey said.

So the new test detects those methylation signatures in a blood sample and, with the help of sophisticated algorithms, counts up how many cells of each type are in the sample. In the experiments reported in the paper, Kelsey, lead author William Accomando, and colleagues counted up the following major immune , or leukocytes: T-cells, B-cells, NK cells, monocytes, eosinophils, basophils, and neutrophils.

Based on their tests using fresh human blood samples from more than 80 donors, they report that their technique's accuracy performed at par in a direct comparison with three "gold standard" methods: "manual five-part differential," "CBC with automated five-part differential," and "fluorescence activated cell sorting."

In further experiments they showed that their technique works to detect the mixtures of immune cells associated with known diseases and that the technique works with blood exposed to storage conditions such as freezing and the addition of anticoagulants.

Moreover, in their experiments the team showed that to distinguish among and count those various immune cell types, they only needed to measure a few dozen methylation marks in the DNA. What's sufficient to constitute a signature, in other words, can be quite short.

The main ingredients of the method, Kelsey said, are libraries of methylation signatures of cells. Kelsey's lab determined the ones needed for this study, but big new epigenetics research consortia in Europe and the United States are poised to produce many more, greatly expanding the versatility of the proprietary method to cover more and other cell types as well.

In addition to the algorithms and the libraries, the test also requires some hardware, such as commercially available methylation microarrays.

The method has proven feasible enough that many other epidemiology research labs are already using it, Kelsey said. Brown University has also applied for a patent on the technique. He said it has the potential to be cheaper and faster than current techniques, although he didn't measure that in the paper.

Explore further: Technique spots disease using immune cell DNA

More information: genomebiology.com/2014/15/3/R50

Related Stories

Technique spots disease using immune cell DNA

July 9, 2012
When a person is sick, there is a tell-tale sign in their blood: a different mix of the various types of immune cells called leukocytes. A group of scientists at several institutions including Brown University has discovered ...

Chemical stem cell signature predicts treatment response for acute myeloid leukemia

February 3, 2014
Researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center have found a chemical "signature" in blood-forming stem cells that predicts whether patients with acute myeloid leukemia ...

Blood cells may offer telltale clues in cancer diagnosis

October 12, 2012
Postdoctoral Research Fellow Devin Koestler is a biostatistician in the Geisel School of Medicine at Dartmouth. He develops and applies statistical methods to large volumes of data, seeking new approaches for understanding ...

Permanent changes in brain genes may not be so permanent after all

January 27, 2014
In normal development, all cells turn off genes they don't need, often by attaching a chemical methyl group to the DNA, a process called methylation. Historically, scientists believed methyl groups could only stick to a particular ...

New study offers insight into why cancer incidence increases with age

February 3, 2014
The accumulation of age-associated changes in a biochemical process that helps control genes may be responsible for some of the increased risk of cancer seen in older people, according to a National Institutes of Health study.

Study of 'sister' stem cells uncovers new cancer clue

September 26, 2013
Scientists have used a brand new technique for examining individual stem cells to uncover dramatic differences in the gene expression levels – which genes are turned 'up' or 'down'– between apparently identical 'sister' ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.