Researchers reveal a new pathway through the sodium pump

March 31, 2014
Researchers reveal a new pathway through the sodium pump
This image shows the structure of the sodium pump, which researchers reveal to be more versatile than previously thought. Credit: Vedovato and Gadsby, 2014 (Structure: Protein Data Bank accession no. 2ZXE; Shinoda et al. 2009. Nature. 459:446)

A study in The Journal of General Physiology provides new evidence that the ubiquitous sodium pump is more complex—and more versatile—than we thought.

The sodium pump is present in the of all animal , using energy derived from ATP to transport sodium and in opposite directions across the cell boundary. By setting up transmembrane gradients of these two ions, the pump plays a vital role in many important processes, including nerve impulses, heartbeats, and muscular contraction.

Now, Rockefeller University researchers Natascia Vedovato and David Gadsby demonstrate that, in addition to its role as a sodium and potassium ion transporter, the pump can simultaneously import into the cell. Their study not only provides evidence of "hybrid" function by the pump, it also raises important questions about whether the inflow of protons through sodium pumps might play a role in certain pathologies.

The sodium pump exports three sodium ions out of the cell and imports two potassium ions into the cell during each transport cycle. Vedovato and Gadsby show that, during this normal cycle, the pump develops a passageway that enables protons to cross the membrane. When the pump releases the first of the three to the cell exterior, a newly emptied binding site becomes available for use by an external proton, allowing it to then make its way into the cytoplasm. The protons travel a distinct route, and proton inflow is not required for successful transport of and potassium.

Import of protons is high when their extracellular concentration is high (pH is low) and membrane potential is negative. The authors therefore speculate that proton inflow might have important implications under conditions in which extracellular pH is lowered, such as in muscle during heavy exercise, in the heart during a heart attack, or in the brain during a stroke.

Explore further: Study offers new insights into the mechanics of muscle fatigue

More information: Vedovato, N., and D.C. Gadsby. 2014. J. Gen. Physiol. DOI: 10.1085/jgp.201311148

Related Stories

Study offers new insights into the mechanics of muscle fatigue

January 17, 2013
A study in The Journal of General Physiology examines the consequences of muscle activity with surprising results, indicating that the extracellular accumulation of potassium that occurs in working muscles is considerably ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (2) Mar 31, 2014
See also: http://www.molecu...nt/6/1/1

"...it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system."

What's surprising is when the complexities of protonergic signaling become known and some people do not realize it is nutrient-dependent. They continue to claim instead that "Nature" "evolves" protons and proteins.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.