Researchers reveal a new pathway through the sodium pump

March 31, 2014, Rockefeller University
Researchers reveal a new pathway through the sodium pump
This image shows the structure of the sodium pump, which researchers reveal to be more versatile than previously thought. Credit: Vedovato and Gadsby, 2014 (Structure: Protein Data Bank accession no. 2ZXE; Shinoda et al. 2009. Nature. 459:446)

A study in The Journal of General Physiology provides new evidence that the ubiquitous sodium pump is more complex—and more versatile—than we thought.

The sodium pump is present in the of all animal , using energy derived from ATP to transport sodium and in opposite directions across the cell boundary. By setting up transmembrane gradients of these two ions, the pump plays a vital role in many important processes, including nerve impulses, heartbeats, and muscular contraction.

Now, Rockefeller University researchers Natascia Vedovato and David Gadsby demonstrate that, in addition to its role as a sodium and potassium ion transporter, the pump can simultaneously import into the cell. Their study not only provides evidence of "hybrid" function by the pump, it also raises important questions about whether the inflow of protons through sodium pumps might play a role in certain pathologies.

The sodium pump exports three sodium ions out of the cell and imports two potassium ions into the cell during each transport cycle. Vedovato and Gadsby show that, during this normal cycle, the pump develops a passageway that enables protons to cross the membrane. When the pump releases the first of the three to the cell exterior, a newly emptied binding site becomes available for use by an external proton, allowing it to then make its way into the cytoplasm. The protons travel a distinct route, and proton inflow is not required for successful transport of and potassium.

Import of protons is high when their extracellular concentration is high (pH is low) and membrane potential is negative. The authors therefore speculate that proton inflow might have important implications under conditions in which extracellular pH is lowered, such as in muscle during heavy exercise, in the heart during a heart attack, or in the brain during a stroke.

Explore further: Study offers new insights into the mechanics of muscle fatigue

More information: Vedovato, N., and D.C. Gadsby. 2014. J. Gen. Physiol. DOI: 10.1085/jgp.201311148

Related Stories

Study offers new insights into the mechanics of muscle fatigue

January 17, 2013
A study in The Journal of General Physiology examines the consequences of muscle activity with surprising results, indicating that the extracellular accumulation of potassium that occurs in working muscles is considerably ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (2) Mar 31, 2014
See also: http://www.molecu...nt/6/1/1

"...it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system."

What's surprising is when the complexities of protonergic signaling become known and some people do not realize it is nutrient-dependent. They continue to claim instead that "Nature" "evolves" protons and proteins.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.