Stem cell advance yields mature heart muscle cells

March 4, 2014 by Renee Meiller, University of Wisconsin-Madison
Stem cell advance yields mature heart muscle cells
An image of cardiomyocytes cultured on the UW-Madison researchers' micropatterned substrates. The image shows a distinct structure forming within individual cells, as well as a more physiologically relevant tissue morphology. Credit: Max Salick.

(Medical Xpress)—A team of University of Wisconsin-Madison researchers has induced human embryonic stem cells (hESC) to differentiate toward pure-population, mature heart muscle cells, or cardiomyocytes. A substrate patterned with a precisely sized series of channels played a critical role in the advance.

Published online February 28, 2014, in the journal Biomaterials, the research could open the door to advances in areas that include tissue engineering and drug discovery and testing.

Researchers currently can differentiate hESC into immature . Those cells, however, don't develop the robust internal structures—repeating sections of called sarcomeres—that enable to produce the contracting force that allows the heart to pump blood. Other cell components that allow heart muscle cells to communicate and work together also are less developed in immature cardiomyocytes.

One barrier to efforts to produce more is the culture surface itself; hESC are notoriously finicky. "It's really hard to culture stem cells effectively and to provide them with an environment that's going to help them to thrive and differentiate in the way you want," says lead author Wendy Crone, a professor of engineering physics, biomedical engineering and and engineering at UW-Madison.

Stem cell advance yields mature heart muscle cells
An image of cardiomyocytes cultured in standard culture conditions. The cardiomyocytes have poorly organized sarcomere formation and cell alignment.Credit: Max Salick. 

Recently, three-dimensional and micropatterned substrates have emerged as more accurately mimicking the cells' physiological environment. However, the majority of previous research studies using patterning were conducted using cells from rats, says Max Salick, a PhD student in materials science at UW-Madison and first author on the paper. "One of the unique aspects of our research is that it observes human cardiomyocytes' response to micropatterning geometries," he says.

Working in laboratories in the Wisconsin Institutes for Discovery, the UW-Madison researchers focused on finding the pattern, including the right size scale, that suits the human . "Our hypothesis was that if we could control the cell shape and how they bind to their surroundings using this micropatterning, we could coax them into forming more aligned, structurally sound fibrous structures that are more relevant in the heart," says Salick.

The researchers' micropatterned substrate consists of a series of lanes, or channels. When they put the cells into the lanes, they saw a clear differences in how the cells responded to various lane sizes—and identifying the optimal size scale was key. "If the lane was too wide, the cells weren't really able to 'feel' their lane, so they didn't align as well," says Salick. "But with lanes less than 100 microns wide, we really started to see the alignment, a stronger sarcomere structure and a more mature phenotype."

The substrate method is more effective and easy to control than others the researchers have explored in the past. And now that they know lane width is critical, the researchers can make the lanes infinitely long, which enables to link and communicate with neighboring cells. "This not only gets them to look like sarcomeres, and their internal structure starts to look like what it's supposed to and behave like what it's supposed to, but the cells also communicate with their neighbors," says Crone. "It's the closest we've gotten to pure-population adult cardiomyocytes."

The National Institutes of Health and the UW-Madison Graduate School provided funding for the research. UW-Madison collaborators on the project included Randolph Ashton, an assistant professor of ; Timothy Kamp, a cardiology professor; students Brett N. Napiwocki, Gavin T. Knight and Shahzad A. Chindhy; and recent graduate Jin Sha.

Explore further: New stem cell technique promises abundance of key heart cells cardiomyocytes

More information: Max R. Salick, Brett N. Napiwocki, Jin Sha, Gavin T. Knight, Shahzad A. Chindhy, Timothy J. Kamp, Randolph S. Ashton, Wendy C. Crone, "Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes", Biomaterials, Available online 28 February 2014, ISSN 0142-9612, dx.doi.org/10.1016/j.biomaterials.2014.02.001.

Related Stories

New stem cell technique promises abundance of key heart cells cardiomyocytes

May 28, 2012
Cardiomyocytes, the workhorse cells that make up the beating heart, can now be made cheaply and abundantly in the laboratory.

Help for a scarred heart: Scarring cells turned to beating muscle

February 12, 2014
Poets and physicians know that a scarred heart cannot beat the way it used to, but the science of reprogramming cells offers hope—for the physical heart, at least.

Molecular beacons light path to cardiac muscle repair

September 5, 2013
Pure cardiac muscle cells, ready to transplant into a patient affected by heart disease.

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.