Finding the target: How timing is critical in establishing an olfactory wiring map

April 10, 2014
This image shows olfactory sensory neurons (green and magenta) located in the olfactory epithelium. Credit: Limei Ma, Ph.D., Stowers Institute for Medical Research

The human nose expresses nearly 400 odorant receptors, which allow us to distinguish a large number of scents. In mice the number of odor receptors is closer to 1000. Each olfactory neuron displays only a single type of receptor and all neurons with the same receptors are connected to the same spot, a glomerulus, in the brain. This convergence, or wiring pattern, is often described as an olfactory map. The map is important because it serves as a code book for odorants that allows the brain to distinguish between food odors and the scent of a predator, among others.

Unlike photoreceptors in the retina or hair cells in the inner ear, which cannot be replaced once damaged, olfactory neurons have the unique capacity to regenerate throughout the life. More remarkably, the regenerated neurons must dispatch their axons on a path through the nasal epithelium to the brain through a distance a thousand times the length of the cell, where they make the proper connections. If regenerating neurons are mis-wired to different glomeruli, odor perception would be altered.

In the April 11, 2014 issue of Science, Associate Investigator C. Ron Yu, Ph.D. and colleagues at the Stowers Institute of Medical Research identify a developmental window during which olfactory neurons of newborn mice can form a proper wiring map. They show that if incorrect neuronal connections are maintained after this period, renewing cells will also be mis-wired.

Their results also hint at how the olfactory neurons connect to their targets. Although scientists can induce stem cells to become neurons, they know little about how to precisely steer them to make the proper connections. This work suggests additional targeting skills that stem cell-generated neurons need to acquire to repair the brain or spinal cord.

Previously, researchers thought that since olfactory neurons exhibited lifelong regeneration, they likewise retained the ability to re-establish correct connections. "We show that this is not the case," says Yu. In the report, his team uses a number of transgenic mouse lines to demonstrate that the first week after birth is a critical window of time during which incorrect projections can be restored to normal. "If mis-targeting does not get corrected within this period, cells still regenerate but many get locked onto the wrong tracks." Yu adds.

Neuronal wiring has intrigued Yu since he was a post-doc in the lab of Richard Axel, M.D., at Columbia University. Back then Yu created a genetically engineered mouse in which he could temporarily muffle the firing of olfactory neurons. He found that inactivating neurons caused them to connect to the wrong glomeruli. After joining the Stowers Institute in 2005, Yu began to wonder whether an incorrectly wired olfactory map could be restored in mice.

In this new work, Yu's team, led by first author Limei Ma, Ph.D., reports that if the silenced are reactivated within a week of a mouse's birth, erroneous olfactory neuron connections are restored. Beyond that critical period, however, neurons appeared to lose the capacity to make the right connections and in fact maintained connections to the wrong glomeruli.

"After the first week, we believe that newly generated neurons follow pre-existing tracks to their target," says Ma, Senior Research Specialist in the Yu lab. A key finding in the report supports this idea. The team provoked a temporary identity crisis in olfactory neurons by broadly mis-expressing an odorant receptor called M71 in cells where it would not normally be displayed. Surprisingly, only the neurons that normally express the M71 receptor targeted the "wrong" glomeruli, not the neurons that express different .

An interpretation of this experiment is that late-born olfactory neurons expressing a particular receptor recognize and follow a track laid down earlier by expressing the very same receptor—even if the latter expressed that receptor due to experimental manipulation. "These have identity tags," says Ma, referring to the receptors. "And they like to follow others displaying the same tag."

As yet, investigators have not identified the molecular basis for the targeting switch occurring at the end of one-week period. "We don't know what keeps these late stage cells from re-establishing the right connections," explains Ma. "Either the cues that guide them disappear or their axons encounter a physical barrier to the target."

Yu envisions the studies in the olfactory system will provide clues on how a regenerated neuron, either through a natural process in the case of the olfactory neuron, or by stem technology, find their target and make the right connection. "To repair a damaged spinal cord, you will need to ensure that newly generated target the right muscle," says Yu. "The next goal is to identify the molecular cues that enable correct projections to be established."

The Yu paper is accompanied by a companion Science study led by Gilad Barnea, Ph.D., of Brown University, who reports a similar critical time period while employing a different approach. In addition to Ma, other contributors to the study include Yunming Wu, Qiang Qiu, Ph.D., Hayley Scheerer and Andrea Moran from Stowers.

Explore further: A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

More information: "A Developmental Switch of Axon Targeting in the Continuously Regenerating Mouse Olfactory System," by L. Ma et al. Science, 2014.

Related: Wiring for smell sets up early, then persists

Related Stories

A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

October 4, 2013
Information about odorant molecules in the environment helps animals to find food, select mates and avoid predators. Yoshihiro Yoshihara and colleagues from the RIKEN Brain Science Institute have now identified a protein ...

New model show how the brain is organized to process odor information

March 19, 2012
Just like a road atlas faithfully maps real-word locations, our brain maps many aspects of our physical world: Sensory inputs from our fingers are mapped next to each other in the somatosensory cortex; the auditory system ...

Mice have distinct subsystem to handle smell associated with fear

July 23, 2012
A new study finds that mice have a distinct neural subsystem that links the nose to the brain and is associated with instinctually important smells such as those emitted by predators. That insight, published online this week ...

Developing our sense of smell: Biologists pinpoint the origin of olfactory nerve cells

March 25, 2013
When our noses pick up a scent, whether the aroma of a sweet rose or the sweat of a stranger at the gym, two types of sensory neurons are at work in sensing that odor or pheromone. These sensory neurons are particularly interesting ...

Researchers find a lobster's sense of smell may hold the key to better electronic sensors

March 18, 2014
(Medical Xpress)—Could lobsters help protect soldiers someday? A team of University of Florida researchers says they might.

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.