The human 'hairless' gene identified: One form of baldness explained

April 1, 2014, Federation of American Societies for Experimental Biology

It's not a hair-brained idea: A new research report appearing in the April 2014 issue of The FASEB Journal explains why people with a rare balding condition called "atrichia with papular lesions" lose their hair, and it identifies a strategy for reversing this hair loss. Specifically the report shows for the first time that the "human hairless gene" imparts an essential role in hair biology by regulating a subset of other hair genes. This newly discovered molecular function likely explains why mutations in the hairless gene contribute to the pathogenesis of atrichia with papular lesions. In addition, this gene also has also been shown to function as a tumor suppressor gene in the skin, raising hope for developing new approaches in the treatment of skin disorders and/or some cancers.

"Identification of hairless as a histone demethylase may shed new insights into its mechanism of action in regulating skin and hair disorders," said Angela M. Christiano, Ph.D., FACMG, a researcher involved in the work from the Departments of Dermatology and Genetics and Development at the Columbia University College of Physicians and Surgeons in New York, NY. "The genes identified in this study could open up new opportunities for developing mechanism-driven approaches for future prevention or treatment of skin diseases including and rare forms of ."

To make their discovery, Christiano and colleagues defined the histone demethylase function of the human hairless gene, both in vitro and using cultured human cells. When the hairless protein was mixed with specific histone substrates under defined reaction conditions, the hairless protein causes a reduction in the level of methylation modification of the histone substrates. Similarly, upon expression of normal hairless protein, but not a mutant form of the hairless protein, researchers observed a drastic loss of histone methylation in human cells. This suggests that this may be the "on/off" switch for hair growth as well as a promising target for some types of skin disease.

"Humans have tried everything to keep their hair, from snake oils to spray-on bald spot solutions," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Now, however, we are finally getting to the root of the problem to manipulate one of the switches that control hair growth."

Explore further: Pause paunch and halt hair loss

More information: Liang Liu, Hyunmi Kim, Alex Casta, Yuki Kobayashi, Lawrence S. Shapiro, and Angela M. Christiano. Hairless is a histone H3K9 demethylase. FASEB J. April 2014 28:1534-1542; DOI: 10.1096/fj.13-237677

Related Stories

Pause paunch and halt hair loss

April 1, 2014
A new discovery showing how hair growth activated fat tissue growth in the skin below the hair follicle could lead to the development of a cream to dissolve fat.

A Viagra follow-up? Drug used to treat glaucoma actually grows human hair

October 26, 2012
If you're balding and want your hair to grow back, then here is some good news. A new research report appearing online in The FASEB Journal shows how the FDA-approved glaucoma drug, bimatoprost, causes human hair to regrow. ...

Japan study raises hopes of cure for baldness

April 18, 2012
Japanese researchers have successfully grown hair on hairless mice by implanting follicles created from stem cells, they announced Wednesday, sparking new hopes of a cure for baldness.

Converting adult human cells to hair-follicle-generating stem cells

January 28, 2014
If the content of many a situation comedy, not to mention late-night TV advertisements, is to be believed, there's an epidemic of balding men, and an intense desire to fix their follicular deficiencies.

Activating pathway could restart hair growth in dormant hair follicles

December 5, 2013
A pathway known for its role in regulating adult stem cells has been shown to be important for hair follicle proliferation, but contrary to previous studies, is not required within hair follicle stem cells for their survival, ...

A key link between tumors and healthy tissue identified

March 21, 2014
(Medical Xpress)—The delicate balance between development of normal tissue and tumors depends in part upon a key molecular switch within cells, Yale School of Medicine researchers report in the March 21 issue of the journal ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.