Converting adult human cells to hair-follicle-generating stem cells

January 28, 2014, University of Pennsylvania School of Medicine
This shows hair shafts (arrows) formed by induced pluripotent stem cell-derived epithelial stem cells. Credit: Ruifeng Yang, Perelman School of Medicine, University of Pennsylvania

If the content of many a situation comedy, not to mention late-night TV advertisements, is to be believed, there's an epidemic of balding men, and an intense desire to fix their follicular deficiencies.

One potential approach to reversing hair loss uses to regenerate the missing or dying hair follicles. But it hasn't been possible to generate sufficient number of hair-follicle-generating stem cells – until now.

Xiaowei "George" Xu, MD, PhD, associate professor of Pathology and Laboratory Medicine and Dermatology at the Perelman School of Medicine, University of Pennsylvania, and colleagues published in Nature Communications a method for converting into epithelial stem cells (EpSCs), the first time anyone has achieved this in either humans or mice.

The epithelial stem cells, when implanted into immunocompromised mice, regenerated the different of human skin and hair follicles, and even produced structurally recognizable hair shaft, raising the possibility that they may eventually enable hair regeneration in people.

Xu and his team, which includes researchers from Penn's departments of Dermatology and Biology, as well as the New Jersey Institute of Technology, started with called dermal fibroblasts. By adding three genes, they converted those cells into induced (iPSCs), which have the capability to differentiate into any cell types in the body. They then converted the iPS cells into epithelial stem cells, normally found at the bulge of hair follicles.

Starting with procedures other research teams had previously worked out to convert iPSCs into keratinocytes, Xu's team demonstrated that by carefully controlling the timing of the growth factors the cells received, they could force the iPSCs to generate large numbers of epithelial stem cells. In the Xu study, the team's protocol succeeded in turning over 25% of the iPSCs into epithelial stem cells in 18 days. Those cells were then purified using the proteins they expressed on their surfaces.

Comparison of the gene expression patterns of the human iPSC-derived epithelial stem cells with epithelial stem cells obtained from human hair follicles showed that the team had succeeded in producing the cells they set out to make in the first place. When they mixed those cells with mouse follicular inductive dermal cells and grafted them onto the skin of immunodeficient mice, they produced functional human epidermis (the outermost layers of skin cells) and follicles structurally similar to human hair follicles.

"This is the first time anyone has made scalable amounts of epithelial stem cells that are capable of generating the epithelial component of hair follicles," Xu says. And those cells have many potential applications, he adds, including wound healing, cosmetics, and hair regeneration.

That said, iPSC-derived epithelial stem cells are not yet ready for use in human subjects, Xu adds. First, a hair follicle contains epithelial cells—a cell type that lines the body's vessels and cavities – as well as a specific kind of adult stem cell called dermal papillae. Xu and his team mixed iPSC-derived EpSCs and mouse dermal cells to generate hair follicles to achieve the growth of the follicles.

"When a person loses hair, they lose both types of cells." Xu explains. "We have solved one major problem, the epithelial component of the . We need to figure out a way to also make new dermal papillae cells, and no one has figured that part out yet."

What's more, the process Xu used to create iPSCs involves genetic modification of human cells with genes encoding oncogenic proteins and so needs more refinement. Still, he notes that stem-cell researchers are developing more workarounds, including strategies using only chemical agents.

Explore further: Activating pathway could restart hair growth in dormant hair follicles

Related Stories

Activating pathway could restart hair growth in dormant hair follicles

December 5, 2013
A pathway known for its role in regulating adult stem cells has been shown to be important for hair follicle proliferation, but contrary to previous studies, is not required within hair follicle stem cells for their survival, ...

Researchers learn how to break a sweat

October 23, 2013
Without sweat, we would overheat and die. In a recent paper in the journal PLOS ONE, USC faculty member Krzysztof Kobielak and a team of researchers explored the ultimate origin of this sticky, stinky but vital substance—sweat ...

Stem cells offer clues to reversing receding hairlines

December 18, 2013
Regenerative medicine may offer ways to banish baldness that don't involve toupees. The lab of USC scientist Krzysztof Kobielak, MD, PhD has published a trio of papers in the journals Stem Cells and the Proceedings of the ...

New 3D hair follicle model to accelerate cure for baldness

July 19, 2013
Hair loss is a common disorder that affects many men and women due to aging or medical conditions. Current FDA-approved drugs can minimize further hair loss but are unable to regrow new hair. The Institute of Bioengineering ...

In stem cells, like real estate, location is most important factor

October 7, 2013
(Medical Xpress)—Stem cells and real estate have this in common: the most important thing is location, location, and location.

Recommended for you

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.