Researchers learn how to break a sweat

October 23, 2013 by Marie Rippen
This image shows staining of slow-cycling sweat gland cells (green) with the protein laminin (red) and the fluorescent stain DAPI (blue). Credit: Yvonne Leung

Without sweat, we would overheat and die. In a recent paper in the journal PLOS ONE, USC faculty member Krzysztof Kobielak and a team of researchers explored the ultimate origin of this sticky, stinky but vital substance—sweat gland stem cells.

Kobielak and his team used a system to make all of the sweat gland cells in a mouse easy to spot: labeling them with (GFP), which is visible under ultraviolet light.

Over time, the GFP became dimmer as it was diluted among dividing sweat gland cells. After four weeks, the only cells that remained fluorescent were the ones that did not divide or divided very slowly—a known property among stem cells of certain tissues, including the and cornea. Therefore, these slow-dividing, fluorescent cells in the sweat gland's coiled lower region were likely also stem cells.

Then, the first author of this paper, graduate student Yvonne Leung, tested whether these fluorescent cells could do what stem cells do best—differentiate into multiple cell types. To the researchers' surprise, these glowing cells generated not only , but also hair follicles when placed in the skin of a mouse without GFP.

The researchers also determined that under certain conditions, the sweat gland could heal skin wounds and regenerate all layers of the epidermis.

"That was a big surprise for us that those very quiescent sweat gland stem maintain multilineage plasticity—participating not only in their own regeneration, but also in the regeneration of hair follicles and skin after injury," said Kobielak, assistant professor of pathology at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

This offers exciting possibilities for developing future stem cell-based treatments for skin and sweat gland-related conditions, such as hyperhidrosis or hypohidrosis (excessive or insufficient sweating). It could also lay the foundation for creating fully functional skin—containing both glands and hair follicles—for burn victims.

Explore further: Sweat glands grown from newly identified stem cells

More information: www.ncbi.nlm.nih.gov/pmc/articles/PMC3776797/

Related Stories

Sweat glands grown from newly identified stem cells

July 6, 2012

To date, few fundamentals have been known about the most common gland in the body, the sweat glands that are essential to controlling body temperature, allowing humans to live in the world’s diverse climates. Now, in ...

Tracking nanodiamond-tagged stem cells

August 5, 2013

A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Recommended for you

Success in the 3-D bioprinting of cartilage

April 28, 2017

A team of researchers at Sahlgrenska Academy has managed to generate cartilage tissue by printing stem cells using a 3-D-bioprinter. The fact that the stem cells survived being printed in this manner is a success in itself. ...

Mouse teeth providing new insights into tissue regeneration

April 27, 2017

Researchers hope to one day use stem cells to heal burns, patch damaged heart tissue, even grow kidneys and other transplantable organs from scratch. This dream edges closer to reality every year, but one of the enduring ...

Dentistry research ID's novel marker for left-handedness

April 27, 2017

Individuals with a slender lower face are about 25 percent more likely to be left-handed. This unexpected finding was identified in 13,536 individuals who participated in three national surveys conducted in the United States.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.