Major genetic study links liver disease gene to bladder cancer

April 4, 2014

A University of Colorado Cancer Center study published today in Journal of the National Cancer Institute (with related research being presented this weekend at the American Association for Cancer Research Annual Conference 2014) details the discovery of a new genetic driver of bladder cancer: silencing of the gene AGL.

"We tend to think of cancer resulting from mutations that let genes make things they shouldn't or turn on when they should be quiet. But cancer can also result from loss of gene function. Some genes suppress cancer. When you turn off these suppressors, cancer grows," says Dan Theodorescu, MD, PhD, director of the University of Colorado Cancer Center and the study's senior author.

To discover which genes, when deactivated, might drive , Theodorescu and colleagues turned off genes, one by one, in bladder cancer cell models. Of course, the vast majority of the genes researchers silenced made no difference – they weren't functionally related to tumor growth. But eventually in this genome-wide shRNA screen, Theodorescu and colleagues turned off the gene AGL. The result was dramatic.

"In tumors that were seeded in mouse models, it was only the cells low in AGL that were able to grow," Theodorescu says. Other genes slightly lowered in these successful tumors included INMT, OSR2, ZBTB4 and GPR107, but decrease in AGL far outstripped the others and put AGL at the top of our list for further exploration," says Theodorescu.

Interestingly, this gene is also mutated in a hereditary liver disease called glycogen storage disease 3 (GSDIII). In GSDIII, loss of AGL makes cells unable to efficiently process glycogen and so excess glycogen builds up in the liver.

With the finding of low AGL in liver cancer and related hints from GSDIII, Theodorescu and colleagues turned to the questions of how AGL drives cancer growth, and whether AGL-driven growth is an artifact of lab conditions or is in fact a feature of the human disease.

To evaluate this AGL-driven growth mechanism, the team evaluated all the genes that change in response to turning AGL off in cancer cells. The team saw cells increase production of the enzyme SHMT2, which allows cells to process glycogen into glycine, an amino acid that is known to drive cancer growth. Theodorescu saw the same increase in SHMT2 leading to more glycine in his bladder . And previous studies show that glycine is needed for the rapid proliferation of tumor cells.

So as AGL goes down, glycine synthesis goes up and tumors are more able to proliferate.

To discover this mechanism's clinical relevance, Theodorescu and colleagues looked at AGL and SHMT2 expression in 561 samples of human bladder cancer. Sure enough, patients with low-AGL tumors fared worse than patients with high-AGL tumors. The group saw similar effect in mouse models: with AGL silenced, bladder cancer mouse models showed enhanced cell growth and nearly double the rate of new blood vessel formation, which tumors use to supply new tissues with nutrients.

"First, this shows that AGL and SHMT2 levels could be used in bladder cancer prognosis – with lower AGL and higher SHMT2, prognosis is worse and may inform treatment decisions. In addition, these may be targetable players in a pathway that drives . By affecting these levels, we may be able to influence the course of the disease," Theodorescu says.

Explore further: Muscle-invasive and non-muscle invasive bladder cancers arise from different stem cells

Related Stories

Muscle-invasive and non-muscle invasive bladder cancers arise from different stem cells

December 17, 2013
Bladder cancer will kill upward of 170,000 people worldwide this year, but bladder cancer isn't fatal in the bladder. Instead, in order to be fatal the disease must metastasize to faraway sites. The question has been this: ...

Little molecule makes big difference in bladder cancer metastasis

April 9, 2013
In order to kill, bladder cancer must metastasize, most commonly to the lung – what are the differences between bladder cancers that do and do not make this deadly transition? Research presented by the Director of the University ...

Lung and bladder cancers have common cell-cycle biomarkers

January 29, 2014
A University of Colorado Cancer Center study published in the journal PLoS ONE shows that bladder and lung cancers are marked by shared differences in the genetics that control the cell cycle. Measuring these genetic signatures ...

Like prostate cancer, bladder cancer patients may benefit from anti-androgen therapy

September 24, 2012
Bladder cancer patients whose tumors express high levels of the protein CD24 have worse prognoses than patients with lower CD24. A University of Colorado Cancer Center study published today in the Proceedings of the National ...

Protein RAL associated with aggressive characteristics in prostate, bladder and skin cancers

May 17, 2012
We have known for years that when the proteins RalA and RalB are present, cells in dishes copy toward aggressive forms of cancer. However, until this week, no study had explored the effects of RAL proteins in human cancers ...

Body's ibuprofen, SPARC, reduces inflammation and thus bladder cancer development and metastasis

January 16, 2013
Cancer researchers are increasingly aware that in addition to genetic mutations in a cancer itself, characteristics of the surrounding tissue can promote or suppress tumor growth. One of these important tissue characteristics ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.